994 resultados para safety motivation
Resumo:
This paper presents a critical review of past research in the work-related driving field in light vehicle fleets (e.g., vehicles < 4.5 tonnes) and an intervention framework that provides future direction for practitioners and researchers. Although work-related driving crashes have become the most common cause of death, injury, and absence from work in Australia and overseas, very limited research has progressed in establishing effective strategies to improve safety outcomes. In particular, the majority of past research has been data-driven, and therefore, limited attention has been given to theoretical development in establishing the behavioural mechanism underlying driving behaviour. As such, this paper argues that to move forward in the field of work-related driving safety, practitioners and researchers need to gain a better understanding of the individual and organisational factors influencing safety through adopting relevant theoretical frameworks, which in turn will inform the development of specifically targeted theory-driven interventions. This paper presents an intervention framework that is based on relevant theoretical frameworks and sound methodological design, incorporating interventions that can be directed at the appropriate level, individual and driving target group.
Resumo:
This paper presents an approach to providing better safety for adolescents playing online games. We highlight an emerging paedophile presence in online games and offer a general framework for the design of monitoring and alerting tools. Our method is to monitor and detect relationships forming with a child in online games, and alert if the relationship indicates an offline meeting with the child has been arranged or has the potential to occur. A prototype implementation with demonstrative components of the framework has been created and is introduced. The prototype demonstration and evaluation uses a teen rated online relationship-building environment for its case study, specifically the predominant Massive Multiplayer Online Game (MMO) World of Warcraft.
Resumo:
Inexperience has been shown to be a major factor in many motorcycle crashes worldwide. Learner motorcyclists are not protected from the risks of the on-road environment to the same extent as learner car drivers. Whilst the learner stage has consistently been shown to be the safest phase for car drivers and the provisional stage to be the most dangerous, data from several Australian states has shown similar numbers of learner and provisionally licensed motorcyclists in crashes. This paper reports a review of learner rider safety research undertaken to inform potential future improvements to the licensing and training system in Queensland, Australia.
Resumo:
This article reviews what international evidence exists on the impact of civil and criminal sanctions upon serious tax noncompliance by individuals. This construct lacks sharp definitional boundaries but includes large tax fraud and large-scale evasion that are not dealt with as fraud. Although substantial research and theory have been developed on general tax evasion and compliance, their conclusions might not apply to large-scale intentional fraudsters. No scientifically defensible studies directly compared civil and criminal sanctions for tax fraud, although one U.S. study reported that significantly enhanced criminal sanctions have more effects than enhanced audit levels. Prosecution is public, whereas administrative penalties are confidential, and this fact encourages those caught to pay heavy penalties to avoid publicity, a criminal record, and imprisonment.
Resumo:
Advances in safety research—trying to improve the collective understanding of motor vehicle crash causation—rests upon the pursuit of numerous lines of inquiry. The research community has focused on analytical methods development (negative binomial specifications, simultaneous equations, etc.), on better experimental designs (before-after studies, comparison sites, etc.), on improving exposure measures, and on model specification improvements (additive terms, non-linear relations, etc.). One might think of different lines of inquiry in terms of ‘low lying fruit’—areas of inquiry that might provide significant improvements in understanding crash causation. It is the contention of this research that omitted variable bias caused by the exclusion of important variables is an important line of inquiry in safety research. In particular, spatially related variables are often difficult to collect and omitted from crash models—but offer significant ability to better understand contributing factors to crashes. This study—believed to represent a unique contribution to the safety literature—develops and examines the role of a sizeable set of spatial variables in intersection crash occurrence. In addition to commonly considered traffic and geometric variables, examined spatial factors include local influences of weather, sun glare, proximity to drinking establishments, and proximity to schools. The results indicate that inclusion of these factors results in significant improvement in model explanatory power, and the results also generally agree with expectation. The research illuminates the importance of spatial variables in safety research and also the negative consequences of their omissions.
Resumo:
Red light cameras (RLCs) have been used in a number of US cities to yield a demonstrable reduction in red light violations; however, evaluating their impact on safety (crashes) has been relatively more difficult. Accurately estimating the safety impacts of RLCs is challenging for several reasons. First, many safety related factors are uncontrolled and/or confounded during the periods of observation. Second, “spillover” effects caused by drivers reacting to non-RLC equipped intersections and approaches can make the selection of comparison sites difficult. Third, sites selected for RLC installation may not be selected randomly, and as a result may suffer from the regression to the mean bias. Finally, crash severity and resulting costs need to be considered in order to fully understand the safety impacts of RLCs. Recognizing these challenges, a study was conducted to estimate the safety impacts of RLCs on traffic crashes at signalized intersections in the cities of Phoenix and Scottsdale, Arizona. Twenty-four RLC equipped intersections in both cities are examined in detail and conclusions are drawn. Four different evaluation methodologies were employed to cope with the technical challenges described in this paper and to assess the sensitivity of results based on analytical assumptions. The evaluation results indicated that both Phoenix and Scottsdale are operating cost-effective installations of RLCs: however, the variability in RLC effectiveness within jurisdictions is larger in Phoenix. Consistent with findings in other regions, angle and left-turn crashes are reduced in general, while rear-end crashes tend to increase as a result of RLCs.
Resumo:
Predicting safety on roadways is standard practice for road safety professionals and has a corresponding extensive literature. The majority of safety prediction models are estimated using roadway segment and intersection (microscale) data, while more recently efforts have been undertaken to predict safety at the planning level (macroscale). Safety prediction models typically include roadway, operations, and exposure variables—factors known to affect safety in fundamental ways. Environmental variables, in particular variables attempting to capture the effect of rain on road safety, are difficult to obtain and have rarely been considered. In the few cases weather variables have been included, historical averages rather than actual weather conditions during which crashes are observed have been used. Without the inclusion of weather related variables researchers have had difficulty explaining regional differences in the safety performance of various entities (e.g. intersections, road segments, highways, etc.) As part of the NCHRP 8-44 research effort, researchers developed PLANSAFE, or planning level safety prediction models. These models make use of socio-economic, demographic, and roadway variables for predicting planning level safety. Accounting for regional differences - similar to the experience for microscale safety models - has been problematic during the development of planning level safety prediction models. More specifically, without weather related variables there is an insufficient set of variables for explaining safety differences across regions and states. Furthermore, omitted variable bias resulting from excluding these important variables may adversely impact the coefficients of included variables, thus contributing to difficulty in model interpretation and accuracy. This paper summarizes the results of an effort to include weather related variables, particularly various measures of rainfall, into accident frequency prediction and the prediction of the frequency of fatal and/or injury degree of severity crash models. The purpose of the study was to determine whether these variables do in fact improve overall goodness of fit of the models, whether these variables may explain some or all of observed regional differences, and identifying the estimated effects of rainfall on safety. The models are based on Traffic Analysis Zone level datasets from Michigan, and Pima and Maricopa Counties in Arizona. Numerous rain-related variables were found to be statistically significant, selected rain related variables improved the overall goodness of fit, and inclusion of these variables reduced the portion of the model explained by the constant in the base models without weather variables. Rain tends to diminish safety, as expected, in fairly complex ways, depending on rain frequency and intensity.
Resumo:
In recent years the development and use of crash prediction models for roadway safety analyses have received substantial attention. These models, also known as safety performance functions (SPFs), relate the expected crash frequency of roadway elements (intersections, road segments, on-ramps) to traffic volumes and other geometric and operational characteristics. A commonly practiced approach for applying intersection SPFs is to assume that crash types occur in fixed proportions (e.g., rear-end crashes make up 20% of crashes, angle crashes 35%, and so forth) and then apply these fixed proportions to crash totals to estimate crash frequencies by type. As demonstrated in this paper, such a practice makes questionable assumptions and results in considerable error in estimating crash proportions. Through the use of rudimentary SPFs based solely on the annual average daily traffic (AADT) of major and minor roads, the homogeneity-in-proportions assumption is shown not to hold across AADT, because crash proportions vary as a function of both major and minor road AADT. For example, with minor road AADT of 400 vehicles per day, the proportion of intersecting-direction crashes decreases from about 50% with 2,000 major road AADT to about 15% with 82,000 AADT. Same-direction crashes increase from about 15% to 55% for the same comparison. The homogeneity-in-proportions assumption should be abandoned, and crash type models should be used to predict crash frequency by crash type. SPFs that use additional geometric variables would only exacerbate the problem quantified here. Comparison of models for different crash types using additional geometric variables remains the subject of future research.
Resumo:
Expert panels have been used extensively in the development of the "Highway Safety Manual" to extract research information from highway safety experts. While the panels have been used to recommend agendas for new and continuing research, their primary role has been to develop accident modification factors—quantitative relationships between highway safety and various highway safety treatments. Because the expert panels derive quantitative information in a “qualitative” environment and because their findings can have significant impacts on highway safety investment decisions, the expert panel process should be described and critiqued. This paper is the first known written description and critique of the expert panel process and is intended to serve professionals wishing to conduct such panels.
Resumo:
Understanding the expected safety performance of rural signalized intersections is critical for (a) identifying high-risk sites where the observed safety performance is substantially worse than the expected safety performance, (b) understanding influential factors associated with crashes, and (c) predicting the future performance of sites and helping plan safety-enhancing activities. These three critical activities are routinely conducted for safety management and planning purposes in jurisdictions throughout the United States and around the world. This paper aims to develop baseline expected safety performance functions of rural signalized intersections in South Korea, which to date have not yet been established or reported in the literature. Data are examined from numerous locations within South Korea for both three-legged and four-legged configurations. The safety effects of a host of operational and geometric variables on the safety performance of these sites are also examined. In addition, supplementary tables and graphs are developed for comparing the baseline safety performance of sites with various geometric and operational features. These graphs identify how various factors are associated with safety. The expected safety prediction tables offer advantages over regression prediction equations by allowing the safety manager to isolate specific features of the intersections and examine their impact on expected safety. The examination of the expected safety performance tables through illustrated examples highlights the need to correct for regression-to-the-mean effects, emphasizes the negative impacts of multicollinearity, shows why multivariate models do not translate well to accident modification factors, and illuminates the need to examine road safety carefully and methodically. Caveats are provided on the use of the safety performance prediction graphs developed in this paper.
Resumo:
The Intermodal Surface Transportation Efficiency Act (ISTEA) of 1991 mandated the consideration of safety in the regional transportation planning process. As part of National Cooperative Highway Research Program Project 8-44, "Incorporating Safety into the Transportation Planning Process," we conducted a telephone survey to assess safety-related activities and expertise at Governors Highway Safety Associations (GHSAs), and GHSA relationships with metropolitan planning organizations (MPOs) and state departments of transportation (DOTs). The survey results were combined with statewide crash data to enable exploratory modeling of the relationship between GHSA policies and programs and statewide safety. The modeling objective was to illuminate current hurdles to ISTEA implementation, so that appropriate institutional, analytical, and personnel improvements can be made. The study revealed that coordination of transportation safety across DOTs, MPOs, GHSAs, and departments of public safety is generally beneficial to the implementation of safety. In addition, better coordination is characterized by more positive and constructive attitudes toward incorporating safety into planning.
Resumo:
The intent of this note is to succinctly articulate additional points that were not provided in the original paper (Lord et al., 2005) and to help clarify a collective reluctance to adopt zero-inflated (ZI) models for modeling highway safety data. A dialogue on this important issue, just one of many important safety modeling issues, is healthy discourse on the path towards improved safety modeling. This note first provides a summary of prior findings and conclusions of the original paper. It then presents two critical and relevant issues: the maximizing statistical fit fallacy and logic problems with the ZI model in highway safety modeling. Finally, we provide brief conclusions.
Resumo:
This paper presents the results of a structural equation model (SEM) that describes and quantifies the relationships between corporate culture and safety performance. The SEM is estimated using 196 individual questionnaire responses from three companies with better than average safety records. A multiattribute analysis of corporate safety culture characteristics resulted in a hierarchical description of corporate safety culture comprised of three major categories — people, process, and value. These three major categories were decomposed into 54 measurable questions and used to develop a questionnaire to quantify corporate safety culture. The SEM identified five latent variables that describe corporate safety culture: (1) a company’s safety commitment; (2) the safety incentives that are offered to field personal for safe performance; (3) the subcontractor involvement in the company culture; (4) the field safety accountability and dedication; and (5) the disincentives for unsafe behaviors. These characteristics of company safety culture serve as indicators for a company’s safety performance. Based on the findings from this limited sample of three companies, this paper proposes a list of practices that companies may consider to improve corporate safety culture and safety performance. A more comprehensive study based on a larger sample is recommended to corroborate the findings of this study.
Resumo:
Construction industry observers tout the use of financial incentives as promoters of motivation and commitment on projects. Yet, little empirical evidence exists concerning their effectiveness. What are the drivers of motivation on construction projects? The reasons that construction project participants are motivated to pursue voluntary incentive goals are examined through four Australian case studies. The results demonstrate the critical role played by project relationships and equitable contract conditions in promoting the effectiveness of financial incentives. In the context of a construction project, this study finds financial incentives to be less important to motivation and performance than relationship enhancement initiatives. This finding is unexpected and has implications for the design of project procurement strategies. These results suggest if project clients ignore the importance of relationship quality between participants, the impact of any financial incentive will be compromised.