943 resultados para resource-use efficiency
Resumo:
Africa’s agriculture faces varying climate change impacts which mainly worsen production conditions and adversely affect its economies. Adaptations thus need to build the resilience of farming systems. Using “resilient adaptation” as a concept, this study analyses how adaptations at farm and policy/institutional-levels contribute to the resilience of Sub-Saharan African agriculture. The developed tool, “the Resilience Check”, provides socio-economic data which complements existing adaptation tools. The underlying development gaps such as insecure property rights, poverty, low self-organisation, inadequate climate data and infrastructure limit resilient adaptations. If farmers could implement recommended practices, existing measures and improved crops can address most impacts expected in the medium-term. However, resource use efficiency remains critical for all farm management types. Development-oriented adaptation measures are needed to provide the robust foundations for building resilience. Reaching the very poor remains a challenge and the externally driven nature of many interventions raises concern about their sustainability. The study recommends practical measures such as decentralising various services and integrating the action plans of the multilateral environmental agreements into one national action plan.
Resumo:
The challenge to properly feed a world population of 9.2 billion by 2050, that must be achieved on essentially currently cropped area, requires that food production be increased by 70%. This large increase can only be achieved by combinations of greater crop yields and more intensive cropping adapted to local conditions and availability of inputs. Farming systems are dynamic and continuously adapt to changing ecological, environmental and social conditions, while achieving greater production and resource-use efficiency by application of science and technology. This article argues that the solution to feed and green the world in 2050 is to support this evolution more strongly by providing farmers with necessary information, inputs, and recognition. There is no revolutionary alternative. Proposals to transform agriculture to low-input and organic systems would, because of low productiv- ity, exacerbate the challenge if applied in small part, and ensure failure if applied more widely. The challenge is, however, great. Irrigation, necessary to increase cropping intensity in many areas cannot be extended much more widely than at present, and it is uncertain if the current rate of crop yield increase can be maintained. Society needs greater recognition of the food-supply problem and must increase funding and support for agricultural research while it attends to issues of food waste and over consumption that can make valuable reductions to food demand from agriculture
Resumo:
Este estudio pretende estimar la eficiencia y la productividad de las principales provincias de la producción de trigo en Egipto. Los datos utilizados en este estudio son datos de panel a nivel de provincias del período 1990-2012, obtenidos del Ministerio de Agricultura y Recuperación Tierras, y de la Agencia Central de Movilización Pública y Estadística, Egipto. Se aplica el enfoque de fronteras estocásticas para medir la eficiencia (función de producción de Cobb-Douglas) y se emplean las especificaciones de Battese y Coelli (1992) y (1995). También se utiliza el índice de Malmquist como una aproximación no paramétrica (Análisis de Envolvente de Datos) para descomponer la productividad total de los factores de las principales provincias productoras de trigo en Egipto en cambio técnico y cambio de eficiencia. El coeficiente de tierra es positivo y significativo en los dos especificaciones Battese y Coelli (1992) y (1995), lo que implica que aumentar la tierra para este cultivo aumentaría significativamente la producción de trigo. El coeficiente de trabajo es positivo y significativo en la especificación de Battese y Coelli (1992), mientras que es positivo y no significativo en la especificación de Battese y Coelli (1995). El coeficiente de la maquinaria es negativo y no significativo en las dos especificaciones de Battese y Coelli (1992) y (1995). El coeficiente de cambio técnico es positivo y no significativo en la especificación de Battese y Coelli (1992), mientras que es positiva y significativo en la especificación de Battese y Coelli (1995). Las variables de efectos del modelo de ineficiencia Battese y Coelli (1995) indican que no existe impacto de las diferentes provincias en la producción de trigo en Egipto; la ineficiencia técnica de la producción de trigo tendió a disminuir durante el período de estudio; y no hay ningún impacto de género en la producción de trigo en Egipto. Los niveles de eficiencia técnica varían entre las diferentes provincias para las especificaciones de Battese y Coelli (1992) y (1995); el nivel mínimo medio de eficiencia técnica es 91.61% en la provincia de Fayoum, mientras que el nivel máximo medio de la eficiencia técnica es 98.69% en la provincia de Dakahlia. La eficiencia técnica toma un valor medio de 95.37%, lo que implica poco potencial para mejorar la eficiencia de uso de recursos en la producción de trigo. La TFPCH de la producción de trigo en Egipto durante el período 1990-2012 tiene un valor menor que uno y muestra un declive. Esta disminución es debida más al componente de cambio técnico que al componente de cambio de eficiencia. La disminución de TFPCH mejora con el tiempo. La provincia de Menoufia tiene la menor disminución en TFPCH, 6.5%, mientras que dos provincias, Sharkia y Dakahlia, son las que más disminuyen en TFPCH, 13.1%, en cada uno de ellas. Menos disminución en TFPCH ocurre en el período 2009-2010, 0.3%, mientras que más disminución se produce en TFPCH en el período 1990-1991, 38.9%. La disminución de la PTF de la producción de trigo en Egipto se atribuye principalmente a la mala aplicación de la tecnología. ABSTRACT The objectives of this study are to estimate the efficiency and productivity of the main governorates of wheat production in Egypt. The data used in this study is a panel data at the governorates level, it represents the time period 1990-2012 and taken from the Ministry of Agriculture and Land Reclamation, and the Central Agency for Public Mobilization and Statistics, Egypt. We apply the stochastic frontier approach for efficiency measurement (Cobb-Douglas production function) and the specifications of Battese and Coelli (1992) and (1995) are employed. Also we use Malmquist TFP index as a non-parametric approach (DEA) to decompose total factor productivity of the main governorates of wheat production in Egypt into technical change and efficiency change. The coefficient of land is positive and significant at Battese and Coelli (1992) and (1995) specifications, implying that increasing the wheat area could significantly enhance the production of wheat. The coefficient of labor is positive and significant at Battese and Coelli (1992) specification, while it is positive and insignificant at Battese and Coelli (1995) specification. The coefficient of machinery is negative and insignificant at the specifications of Battese and Coelli (1992) and (1995). The technical change coefficient is positive and insignificant at Battese and Coelli (1992) specification, while it is positive and significant at Battese and Coelli (1995) specification. The variables of the inefficiency effect model indicate that there is no impact from the location of the different governorates on wheat production in Egypt, the technical inefficiency of wheat production tended to decrease through the period of study, and there is no impact from the gender on wheat production in Egypt. The levels of technical efficiency vary among the different governorates for the specifications of Battese and Coelli (1992) and (1995); the minimum mean level of technical efficiency is 91.61% at Fayoum governorate, while the maximum mean level of technical efficiency is 98.69% at Dakahlia governorate. The technical efficiency takes an average value of 95.37%, this implying that little potential exists to improve resource use efficiency in wheat production. The TFPCH of wheat production in Egypt during the time period 1990-2012 has a value less than one and shows a decline; this decline is due mainly to the technical change component than the efficiency change component. The decline in TFPCH is generally improves over time. Menoufia governorate has the least declining in TFPCH by 6.5%, while two governorates, Sharkia and Dakahlia have the most declining in TFPCH by 13.1% for each of them. The least declining in TFPCH occurred at the period 2009- 2010 by 0.3%, while the most declining in TFPCH occurred at the period 1990-1991 by 38.9%. The declining in TFP of wheat production in Egypt is attributed mainly to poor application of technology.
Resumo:
The Sustainable Value approach integrates the efficiency with regard to environmental, social and economic resources into a monetary indicator. It gained significant popularity as evidenced by diverse applications at the corporate level. However, its introduction as a measure adhering to the strong sustainability paradigm sparked an ardent debate. This study explores its validity as a macroeconomic strong sustainability measure by applying the Sustainable Value approach to the EU-15 countries. Concretely, we assessed environmental, social and economic resources in combination with the GDP for all EU-15 countries from 1995 to 2006 for three benchmark alternatives. The results show that several countries manage to adequately delink resource use from GDP growth. Furthermore, the remarkable difference in outcome between the national and EU-15 benchmark indicates a possible inefficiency of the current allocation of national resource ceilings imposed by the European institutions. Additionally, by using an effects model we argue that the service degree of the economy and governmental expenditures on social protection and research and development are important determinants of overall resource efficiency. Finally, we sketch out three necessary conditions to link the Sustainable Value approach to the strong sustainability paradigm.
Resumo:
Una gestión más eficiente y equitativa del agua a escala de cuenca no se puede centrar exclusivamente en el recurso hídrico en sí, sino también en otras políticas y disciplinas científicas. Existe un consenso creciente de que, además de la consideración de las cambiantes condiciones climáticas, es necesaria una integración de ámbitos de investigación tales como la agronomía, planificación del territorio y ciencias políticas y económicas a fin de satisfacer de manera sostenible las demandas de agua por parte de la sociedad y del medio natural. La Política Agrícola Común (PAC) es el principal motor de cambio en las tendencias de paisajes rurales y sistemas agrícolas, pero el deterioro del medio ambiente es ahora una de las principales preocupaciones. Uno de los cambios más relevantes se ha producido con la expansión e intensificación del olivar en España, principalmente con nuevas zonas de regadío o la conversión de olivares de secano a sistemas en regadío. Por otra parte, el cambio de las condiciones climáticas podría ejercer un papel importante en las tendencias negativas de las aportaciones a los ríos, pero no queda claro el papel que podrían estar jugando los cambios de uso de suelo y cobertura vegetal sobre las tendencias negativas de caudal observadas. Esta tesis tiene como objetivo mejorar el conocimiento de los efectos de la producción agrícola, política agraria y cambios de uso de suelo y cobertura vegetal sobre las condiciones de calidad del agua, respuesta hidrológica y apropiación del agua por parte de la sociedad. En primer lugar, el estudio determina las tendencias existentes de nitratos y sólidos en suspensión en las aguas superficiales de la cuenca del río Guadalquivir durante el periodo de 1998 a 2009. Desde una perspectiva de política agraria, la investigación trata de evaluar mediante un análisis de datos de panel las principales variables, incluyendo la reforma de la PAC de 2003, que están teniendo una influencia en ambos indicadores de calidad. En segundo lugar, la apropiación del agua y el nivel de contaminación por nitratos debido a la producción del aceite de oliva en España se determinan con una evaluación de la huella hídrica (HH), teniendo en cuenta una variabilidad espacial y temporal a largo de las provincias españolas y entre 1997 y 2008. Por último, la tesis analiza los efectos de los cambios de uso de suelo y cobertura vegetal sobre las tendencias negativas observadas en la zona alta del Turia, cabecera de la cuenca del río Júcar, durante el periodo 1973-2008 mediante una modelización ecohidrológica. En la cuenca del Guadalquivir cerca del 20% de las estaciones de monitoreo muestran tendencias significativas, lineales o cuadráticas, para cada indicador de calidad de agua. La mayoría de las tendencias significativas en nitratos están aumentando, y la mayoría de tendencias cuadráticas muestran un patrón en forma de U. Los modelos de regresión de datos de panel muestran que las variables más importantes que empeoran ambos indicadores de calidad del agua son la intensificación de biomasa y las exportaciones de ambos indicadores de calidad procedentes de aguas arriba. En regiones en las que el abandono agrícola y/o desintensificación han tenido lugar han mejorado las condiciones de calidad del agua. Para los nitratos, el desacoplamiento de las subvenciones a la agricultura y la reducción de la cuantía de las subvenciones a tierras de regadío subyacen en la reducción observada de la concentración de nitratos. Las medidas de modernización de regadíos y el establecimiento de zonas vulnerables a nitratos reducen la concentración en subcuencas que muestran una tendencia creciente de nitratos. Sin embargo, el efecto de las exportaciones de nitratos procedente de aguas arriba, la intensificación de la biomasa y los precios de los cultivos presentan un mayor peso, explicando la tendencia creciente observada de nitratos. Para los sólidos en suspensión, no queda de forma evidente si el proceso de desacoplamiento ha influido negativa o positivamente. Sin embargo, los mayores valores de las ayudas agrarias aún ligadas a la producción, en particular en zonas de regadío, conllevan un aumento de las tasas de erosión. Aunque la cuenca del Guadalquivir ha aumentado la producción agrícola y la eficiencia del uso del agua, el problema de las altas tasas de erosión aún no ha sido mitigado adecuadamente. El estudio de la huella hídrica (HH) revela que en 1 L de aceite de oliva español más del 99,5% de la HH está relacionado con la producción de la aceituna, mientras que menos del 0,5% se debe a otros componentes, es decir, a la botella, tapón y etiqueta. Durante el período estudiado, la HH verde en secano y en regadío representa alrededor del 72% y 12%, respectivamente, del total de la HH. Las HHs azul y gris representan 6% y 10%, respectivamente. La producción de aceitunas se concentra en regiones con una HH menor por unidad de producto. La producción de aceite de oliva ha aumentado su productividad del agua durante 1997-2008, incentivado por los crecientes precios del aceite, como también lo ha hecho la cantidad de exportaciones de agua virtual. De hecho, las mayores zonas productoras presentan una eficiencia alta del uso y de productividad del agua, así como un menor potencial de contaminación por nitratos. Pero en estas zonas se ve a la vez reflejado un aumento de presión sobre los recursos hídricos locales. El aumento de extracciones de agua subterránea relacionadas con las exportaciones de aceite de oliva podría añadir una mayor presión a la ya estresada cuenca del Guadalquivir, mostrando la necesidad de equilibrar las fuerzas del mercado con los recursos locales disponibles. Los cambios de uso de suelo y cobertura vegetal juegan un papel importante en el balance del agua de la cuenca alta del Turia, pero no son el principal motor que sustenta la reducción observada de caudal. El aumento de la temperatura es el principal factor que explica las mayores tasas de evapotranspiración y la reducción de caudales. Sin embargo, los cambios de uso de suelo y el cambio climático han tenido un efecto compensatorio en la respuesta hidrológica. Por un lado, el caudal se ha visto afectado negativamente por el aumento de la temperatura, mientras que los cambios de uso de suelo y cobertura vegetal han compensado positivamente con una reducción de las tasas de evapotranspiración, gracias a los procesos de disminución de la densidad de matorral y de degradación forestal. El estudio proporciona una visión que fortalece la interdisciplinariedad entre la planificación hidrológica y territorial, destacando la necesidad de incluir las implicaciones de los cambios de uso de suelo y cobertura vegetal en futuros planes hidrológicos. Estos hallazgos son valiosos para la gestión de la cuenca del río Turia, y el enfoque empleado es útil para la determinación del peso de los cambios de uso de suelo y cobertura vegetal en la respuesta hidrológica en otras regiones. ABSTRACT Achieving a more efficient and equitable water management at catchment scale does not only rely on the water resource itself, but also on other policies and scientific knowledge. There is a growing consensus that, in addition to consideration of changing climate conditions, integration with research areas such as agronomy, land use planning and economics and political science is required to meet sustainably the societal and environmental water demands. The Common Agricultural Policy (CAP) is a main driver for trends in rural landscapes and agricultural systems, but environmental deterioration is now a principal concern. One of the most relevant changes has occurred with the expansion and intensification of olive orchards in Spain, taking place mainly with new irrigated areas or with the conversion from rainfed to irrigated systems. Moreover, changing climate conditions might exert a major role on water yield trends, but it remains unclear the role that ongoing land use and land cover changes (LULCC) might have on observed river flow trends. This thesis aims to improve the understanding of the effects of agricultural production, policies and LULCC on water quality conditions, hydrological response and human water appropriation. Firstly, the study determines the existing trends for nitrates and suspended solids in the Guadalquivir river basin’s surface waters (south Spain) during the period from 1998 to 2009. From a policy perspective, the research tries to assess with panel data analysis the main drivers, including the 2003 CAP reform, which are having an influence on both water quality indicators. Secondly, water appropriation and nitrate pollution level originating from the production of olive oil in Spain is determined with a water footprint (WF) assessment, considering a spatial temporal variability across the Spanish provinces and from 1997 to 2008 years. Finally, the thesis analyzes the effects of the LULCC on the observed negative trends over the period 1973-2008 in the Upper Turia basin, headwaters of the Júcar river demarcation (east Spain), with ecohydrological modeling. In the Guadalquivir river basin about 20% of monitoring stations show significant trends, linear or quadratic, for each water quality indicator. Most significant trends of nitrates are augmenting than decreasing, and most significant quadratic terms of both indicators exhibit U-shaped patterns. The panel data models show that the most important drivers that are worsening nitrates and suspended solids in the basin are biomass intensification and exports of both water quality indicators from upland regions. In regions that agricultural abandonment and/or de-intensification have taken place the water quality conditions have improved. For nitrates, the decoupling of agricultural subsidies and the reduction of the amount of subsidies to irrigated land underlie the observed reduction of nitrates concentration. Measures of irrigation modernization and establishment of vulnerable zones to nitrates ameliorate the concentration of nitrates in subbasins showing an increasing trend. However, the effect of nitrates load from upland areas, intensification of biomass and crop prices present a greater weight leading to the final increasing trend in this subbasins group, where annual crops dominate. For suspended solids, there is no clear evidence that decoupling process have influenced negatively or positively. Nevertheless, greater values of subsidies still linked to production, particularly in irrigated regions, lead to increasing erosion rates. Although agricultural production has augmented in the basin and water efficiency in the agricultural sector has improved, the issue of high erosion rates has not yet been properly faced. The water footprint (WF) assessment reveals that for 1 L Spanish olive oil more than 99.5% of the WF is related to the olive fruit production, whereas less than 0.5% is due to other components i.e. bottle, cap and label. Over the studied period, the green WF in rainfed and irrigated systems represents about 72% and 12%, respectively, of the total WF. Blue and grey WFs represent 6% and 10%, respectively. The olive production is concentrated in regions with the smallest WF per unit of product. The olive oil production has increased its apparent water productivity from 1997 to 2008 incentivized by growing trade prices, but also did the amount of virtual water exports. In fact, the largest producing areas present high water use efficiency per product and apparent water productivity as well as less nitrates pollution potential, but this enhances the pressure on the available water resources. Increasing groundwater abstractions related to olive oil exports may add further pressure to the already stressed Guadalquivir basin. This shows the need to balance the market forces with the available local resources. Concerning the effects of LULCC on the Upper Turia basin’s streamflow, LULCC play a significant role on the water balance, but it is not the main driver underpinning the observed reduction on Turia's streamflow. Increasing mean temperature is the main factor supporting larger evapotranspiration rates and streamflow reduction. In fact, LULCC and climate change have had an offsetting effect on the streamflow generation during the study period. While streamflow has been negatively affected by increasing temperature, ongoing LULCC have positively compensated with reduced evapotranspiration rates, thanks to mainly shrubland clearing and forest degradation processes. The research provides insight for strengthening the interdisciplinarity between hydrological and spatial planning, highlighting the need to include the implications of LULCC in future hydrological plans. These findings are valuable for the management of the Turia river basin, as well as a useful approach for the determination of the weight of LULCC on the hydrological response in other regions.
Resumo:
Addressing high and volatile natural resource prices, uncertain supply prospects, reindustrialization attempts and environmental damages related to resource use, resource efficiency has evolved into a highly debated proposal among academia, policy makers, firms and international financial institutions (IFIs). In 2011, the European Union (EU) declared resource efficiency as one of its seven flagship initiatives in its Europe 2020 strategy. This paper contributes to the discussions by assessing its key initiative, the Roadmap to a Resource Efficient Europe (EC 2011 571), following two streams of evaluation. In a first step, resource efficiency is linked to two theoretical frameworks regarding sustainability, (i) the sustainability triangle (consisting of economic, social and ecological dimensions) and (ii) balanced sustainability (combining weak and strong sustainability). Subsequently, both sustainability frameworks are used to assess to which degree the Roadmap follows the concept of sustainability. It can be concluded that it partially respects the sustainability triangle as well as balanced sustainability, primarily lacking a social dimension. In a second step, following Steger and Bleischwitz (2009), the impact of resource efficiency on competitiveness as advocated in the Roadmap is empirically evaluated. Using an Arellano–Bond dynamic panel data model reveals no robust impact of resource efficiency on competiveness in the EU between 2004 and 2009 – a puzzling result. Further empirical research and enhanced data availability are needed to better understand the impacts of resource efficiency on competitiveness on the macroeconomic, microeconomic and industry level. In that regard, strengthening the methodologies of resource indicators seem essential. Last but certainly not least, political will is required to achieve the transition of the EU-economy into a resource efficient future.
Resumo:
Since the 1950s the global consumption of natural resources has skyrocketed, both in magnitude and in the range of resources used. Closely coupled with emissions of greenhouse gases, land consumption, pollution of environmental media, and degradation of ecosystems, as well as with economic development, increasing resource use is a key issue to be addressed in order to keep the planet Earth in a safe and just operating space. This requires thinking about absolute reductions in resource use and associated environmental impacts, and, when put in the context of current re-focusing on economic growth at the European level, absolute decoupling, i.e., maintaining economic development while absolutely reducing resource use and associated environmental impacts. Changing behavioural, institutional and organisational structures that lock-in unsustainable resource use is, thus, a formidable challenge as existing world views, social practices, infrastructures, as well as power structures, make initiating change difficult. Hence, policy mixes are needed that will target different drivers in a systematic way. When designing policy mixes for decoupling, the effect of individual instruments on other drivers and on other instruments in a mix should be considered and potential negative effects be mitigated. This requires smart and time-dynamic policy packaging. This Special Issue investigates the following research questions: What is decoupling and how does it relate to resource efficiency and environmental policy? How can we develop and realize policy mixes for decoupling economic development from resource use and associated environmental impacts? And how can we do this in a systemic way, so that all relevant dimensions and linkages—including across economic and social issues, such as production, consumption, transport, growth and wellbeing—are taken into account? In addressing these questions, the overarching goals of this Special Issue are to: address the challenges related to more sustainable resource-use; contribute to the development of successful policy tools and practices for sustainable development and resource efficiency (particularly through the exploration of socio-economic, scientific, and integrated aspects of sustainable development); and inform policy debates and policy-making. The Special Issue draws on findings from the EU and other countries to offer lessons of international relevance for policy mixes for more sustainable resource-use, with findings of interest to policy makers in central and local government and NGOs, decision makers in business, academics, researchers, and scientists.
Resumo:
At present, the cement industry generates approximately 5% of the world`s anthropogenic CO(2) emissions. This share is expected to increase since demand for cement based products is forecast to multiply by a factor of 2.5 within the next 40 years and the traditional strategies to mitigate emissions, focused on the production of cement, will not be capable of compensating such growth. Therefore, additional mitigation strategies are needed, including an increase in the efficiency of cement use. This paper proposes indicators for measuring cement use efficiency, presents a benchmark based on literature data and discusses potential gains in efficiency. The binder intensity (bi) index measures the amount of binder (kg m(-3)) necessary to deliver 1 MPa of mechanical strength, and consequently express the efficiency of using binder materials. The CO(2) intensity index (ci) allows estimating the global warming potential of concrete formulations. Research benchmarks show that bi similar to 5 kg m(-3) MPa(-1) are feasible and have already been achieved for concretes >50 MPa. However, concretes with lower compressive strengths have binder intensities varying between 10 and 20 kg m(-3) MPa(-1). These values can be a result of the minimum cement content established in many standards and reveal a significant potential for performance gains. In addition, combinations of low bi and ci are shown to be feasible. (c) 2010 Elsevier Ltd. All rights reserved.
Resumo:
A major challenge faced by today's white clover breeder is how to manage resources within a breeding program. It is essential to utilise these resources with sufficient flexibility to build on past progress from conventional breeding strategies, but also take advantage of emerging opportunities from molecular breeding tools such as molecular markers and transformation. It is timely to review white clover breeding strategies. This background can then be used as a foundation for considering how to continue conventional plant improvement activities and complement them with molecular breeding opportunities. In this review, conventional white clover breeding strategies relevant to the Australian dryland target population environments are considered. Attention is given to: (i) availability of genetic variation, (ii) characterisation of germplasm collections, (iii) quantitative models for estimation of heritability, (iv) the role of multi-environment trials to accommodate genotype-by-environment interactions, (v) interdisciplinary research to understand adaptation to dryland environments, (vi) breeding and selection strategies, and (vii) cultivar structure. Current achievements in biotechnology with specific reference to white clover breeding in Australia are considered, and computer modelling of breeding programs is discussed as a useful integrative tool for the joint evaluation of conventional and molecular breeding strategies and optimisation of resource use in breeding programs. Four areas are identified as future research priorities: (i) capturing the potential genetic diversity among introduced accessions and ecotypes that are adapted to key constraints such as summer moisture stress and the use of molecular markers to assess the genetic diversity, (ii) understanding the underlying physiological/morphological root and shoot mechanisms involved in water use efficiency of white clover, with the objective of identifying appropriate selection criteria, (iii) estimation of quantitative genetic parameters of important morphological/physiological attributes to enable prediction of response to selection in target environments, and (iv) modelling white clover breeding strategies to evaluate the opportunities for integration of molecular breeding strategies with conventional breeding programs.
Resumo:
Agriculture in limited resource areas is characterized by small farms which an generally too small to adequately support the needs of an average farm family. The farming operation can be described as a low input cropping system with the main energy source being manual labor, draught animals and in some areas hand tractors. These farming systems are the most important contributor to the national economy of many developing countries. The role of tillage is similar in dryland agricultural systems in both the high input (HICS) and low input cropping systems (LICS), however, wet cultivation or puddling is unique to lowland rice-based systems in low input cropping systems. Evidence suggest that tillage may result in marginal increases in crop yield in the short term, however, in the longer term it may be neutral or give rise to yield decreases associated with soil structural degradation. On marginal soils, tillage may be required to prepare suitable seedbeds or to release adequate Nitrogen through mineralization, but in the longer term, however, tillage reduces soil organic matter content, increases soil erodibility and the emission of greenhouse gases. Tillage in low input cropping systems involves a very large proportion of the population and any changes: in current practices such as increased mechanization will have a large social impact such as increased unemployment and increasing feminization of poverty, as mechanization may actually reduce jobs for women. Rapid mechanization is likely to result in failures, but slower change, accompanied by measures to provide alternative rural employment, might be beneficial. Agriculture in limited resource areas must produce the food and fiber needs of their community, and its future depends on the development of sustainable tillage/cropping systems that are suitable for the soil and climatic conditions. These should be based on sound biophysical principles and meet the needs of and he acceptable to the farming communities. Some of the principle requirements for a sustainable system includes the maintenance of soil health, an increase in the rain water use efficiency of the system, increased use of fertilizer and the prevention of erosion. The maintenance of crop residues on the surface is paramount for meeting these requirements, and the competing use of crop residues must be met from other sources. These requirements can be met within a zonal tillage system combined with suitable agroforestry, which will reduce the need for crop residues. It is, however, essential that farmers participate in the development of any new technologies to ensure adoption of the new system. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
Energy efficiency and saving energy are the main question marks when thinking of reducing carbon dioxide emissions or cutting costs. The objective of thesis is to evaluate policy instruments concerning end-use energy efficiency of heavy industry in European Union. These policy instruments may be divided in various ways, but in this thesis the division is to administrative, financial, informative and voluntary instruments. Administrative instruments introduced in this thesis are Directive on Integrated Pollution Prevention and Control, Directive on Energy End-use Efficiency and Energy Services, and Climate and Energy Package. Financial means include energy and emission taxation, EU Emission Trading Scheme and diverse support systems. Informative instruments consist of horizontal BAT Reference Document for Energy Efficiency, as well as substantial EU documents including Green Paper on Energy Efficiency, Action Plan for Energy Efficiency and An Energy Policy for Europe. And finally, voluntary instruments include environmental managements systems like ISO 14001 and EMAS, energy auditing and benchmarking. The efficiency of different policy instruments vary quite a lot. Informative instruments lack the commitment from industry and are thus almost ineffective, contrary to EU Emission Trading Scheme, which is said to be the solution to climate problems. The efficiency of administrative means can be placed between those mentioned and voluntary instruments are still quite fresh to be examined fruitfully. However, each instrument has their potential and challenges. Cases from corporate world strengthen the results from theoretical part. Cases were written mainly on the basis of interviews. The interviewees praised the energy efficiency contract of Finnish industry, but the EU ETS takes the leading role of policy instruments. However, for industry the reductions do not come easily.
Resumo:
Rising demand for food, fiber, and biofuels drives expanding irrigation withdrawals from surface water and groundwater. Irrigation efficiency and water savings have become watchwords in response to climate-induced hydrological variability, increasing freshwater demand for other uses including ecosystem water needs, and low economic productivity of irrigation compared to most other uses. We identify three classes of unintended consequences, presented here as paradoxes. Ever-tighter cycling of water has been shown to increase resource use, an example of the efficiency paradox. In the absence of effective policy to constrain irrigated-area expansion using "saved water", efficiency can aggravate scarcity, deteriorate resource quality, and impair river basin resilience through loss of flexibility and redundancy. Water scarcity and salinity effects in the lower reaches of basins (symptomatic of the scale paradox) may partly be offset over the short-term through groundwater pumping or increasing surface water storage capacity. However, declining ecological flows and increasing salinity have important implications for riparian and estuarine ecosystems and for non-irrigation human uses of water including urban supply and energy generation, examples of the sectoral paradox. This paper briefly considers three regional contexts with broadly similar climatic and water-resource conditions – central Chile, southwestern US, and south-central Spain – where irrigation efficiency directly influences basin resilience. The comparison leads to more generic insights on water policy in relation to irrigation efficiency and emerging or overdue needs for environmental protection.
Resumo:
Policy makers are often called upon to navigate between scientists’ urgent calls for long-term concerted action to reduce the environmental impacts due to resource use, and the public’s concerns over policies that threaten lifestyles or jobs. Against these political challenges, resource efficiency policy making is often a changeable and even chaotic process, which has fallen short of the political ambitions set by democratically elected governments. This article examines the importance of paradigms in understanding how the public collectively responds to new policy proposals, such as those developed within the project DYNAmic policy MiXes for absolute decoupling of environmental impact of EU resource use from economic growth (DYNAMIX). The resulting proposed approach provides a framework to understand how different concerns and worldviews converge within public discourse, potentially resulting in paradigm change. Thus an alternative perspective on how resource efficiency policy can be development is proposed, which envisages early policies to lay the ground for future far-reaching policies, by altering the underlying paradigm context in which the public receive and respond to policy. The article concludes by arguing that paradigm change is more likely if the policy is conceived, framed, designed, analyzed, presented, and evaluated from the worldview or paradigm pathway that it seeks to create (i.e. the destination paradigm).
Resumo:
We used environmental accounting to evaluate high-intensity clonal eucalyptus production in Sao Paolo, Brazil, converting inputs (environmental, material, and labor) to emergy units so ecological efficiency could be compared on a common basis. Input data were compiled under three pH management scenarios (lime, ash, and sludge). The dominant emergy input is environmental work (transpired water, similar to 58% of total emergy), followed by diesel (similar to 15%); most purchased emergy is invested during harvest (41.8% of 7-year production totals). Where recycled materials are used for pH amendment (ash or sludge instead of lime), we observe marked improvements in ecological efficiency; lime (raw) yielded the highest unit emergy value (UEV = emergy per unit energy in the product = 9.6E + 03 sej J(-1)), whereas using sludge and ash (recycled) reduced the UEV to 8.9E + 03 and 8.8E + 03 sej J(-1), respectively. The emergy yield ratio was similarly affected, suggesting better ecological return on energy invested. Sensitivity of resource use to other operational modifications (e.g., decreased diesel, labor, or agrochemicals) was small (<3% change). Emergy synthesis permits comparison of sustainability among forest production systems globally. This eucalyptus scheme shows the highest ecological efficiency of analyzed pulp production operations (UEV range = 1.1 to 3.6E + 04 sej J(-1)) despite high operational intensity.
Resumo:
Tomato high pigment (hp) mutants represent an interesting horticultural resource due to their enhanced accumulation of carotenoids, flavonoids and vitamin C. Since hp mutants are known for their exaggerated light responses, the molecules accumulated are likely to be antioxidants, recruited to deal with light and others stresses. Further phenotypes displayed by hp mutations are reduced growth and an apparent disturbance in water loss. Here, we examined the impact of the hp1 mutation and its near isogenic line cv Micro-Tom (MT) on stomatal conductance (gs), transpiration (E), CO(2) assimilation (A) and water use efficiency (WUE). Detached hp1 leaves lost water more rapidly than control leaves, but this behaviour was reversed by exogenous abscisic acid (ABA), indicating the ability of hp1 to respond to this hormone. Although attached hp1 leaves had enhanced gs, E and A compared to control leaves, genotypic differences were lost when water was withheld. Both instantaneous leaf-level WUE and long-term whole plant WUE did not differ between hp1 and MT. Our results indicate a link between exaggerated light response and water loss in hp1, which has important implications for the use of this mutant in both basic and horticultural research.