971 resultados para refractive error development
Resumo:
PURPOSE. To compare the objective accommodative amplitude and dynamics of eyes implanted with the one-compartment-unit (1CU; HumanOptics AG, Erlangen, Germany) accommodative intraocular lenses (IOLs) with that measured subjectively. METHODS. Twenty eyes with a 1CU accommodative IOL implanted were refracted and distance and near acuity measured with a logMAR (logarithm of the minimum angle of resolution) chart. The objective accommodative stimulus-response curve for static targets between 0.17 and 4.00 D accommodative demand was measured with the SRW-5000 (Shin-Nippon Commerce Inc., Tokyo, Japan) and PowerRefractor (PlusOptiX, Nürnberg, Germany) autorefractors. Continuous objective recording of dynamic accommodation was measured with the SRW-5000, with the subject viewing a target moving from 0 to 2.50 D at 0.3 Hz through a Badal lens system. Wavefront aberrometry measures (Zywave; Bausch & Lomb, Rochester, NY) were made through undilated pupils. Subjective amplitude of accommodation was measured with the RAF (Royal Air Force accommodation and vergence measurement) rule. RESULTS. Four months after implantation best-corrected acuity was -0.01 ± 0.16 logMAR at distance and 0.60 ± 0.09 logMAR at near. Objectively, the static amplitude of accommodation was 0.72 ± 0.38 D. The average dynamic amplitude of accommodation was 0.71 ± 0.47 D, with a lag behind the target of 0.50 ± 0.48 seconds. Aberrometry showed a decrease in power of the lens-eye combination from the center to the periphery in all subjects (on average, -0.38 ± 0.28 D/mm). Subjective amplitude of accommodation was 2.24 ± 0.42 D. Two years after 1CU implantation, refractive error and distance visual acuity remained relatively stable, but near visual acuity, and the subjective and objective amplitudes of accommodation decreased. CONCLUSIONS. The objective accommodating effects of the 1CU lens appear to be limited, although patients are able to track a moving target. Subjective and objective accommodation was reduced at the 2-year follow-up. The greater subjective amplitude of accommodation is likely to result from the eye's depth of focus of and the aspheric nature of the IOL. Copyright © Association for Research in Vision and Ophthalmology.
Resumo:
PURPOSE. To compare the magnitude and time course of nearwork-induced transient myopia (NITM) in preadolescent Hong Kong Chinese myopes and emmetropes. METHOD. Forty-five Hong Kong Chinese children, 35 myopes and 10 emmetropes aged 6 to 12 years (median, 7.5), monocularly viewed a letter target through a Badal lens for 5 minutes at either 5.00- or 2.50-D accommodative demand, followed by 3 minutes of viewing the equivalent target at optical infinity. Accommodative responses were measured continuously with a modified, infrared, objective open-field autorefractor. Accommodative responses were also measured for a countercondition: viewing of a letter target for 5 minutes at optical infinity, followed by 3 minutes of viewing the target at a 5.00-D accommodative demand. The results were compared with tonic accommodation and both subject and family history of refractive error. RESULTS. Retinal-blur-driven NITM was significantly greater in Hong Kong Chinese children with myopic vision than in the emmetropes after both near tasks, but showed no significant dose effect. The NITM was still evident 3 minutes after viewing the 5.00-D near task for 5 minutes. The magnitude of NITM correlated with the accommodative drift after viewing a distant target for more than 4 minutes, but was unrelated to the subjects' or family history of refractive error. CONCLUSIONS. In a preadolescent ethnic population with known predisposition to myopia, there is a significant posttask blur-driven accommodative NITM, which is sustained for longer than has previously been found in white adults.
Resumo:
Background: A new commercially available device (IOLMaster, Zeiss Instruments) provides high resolution non-contact measurements of axial length (using partial coherent interferometry), anterior chamber depth, and corneal radius (using image analysis). The study evaluates the validity and repeatability of these measurements and compares the findings with those obtained from instrumentation currently used in clinical practice. Method: Measurements were taken on 52 subjects (104 eyes) aged 18-40 years with a range of mean spherical refractive error from +7.0 D to -9.50 D. IOLMaster measurements of anterior chamber depth and axial length were compared with A-scan applanation ultrasonography (Storz Omega) and those for corneal radius with a Javal-Schiötz keratometer (Topcon) and an EyeSys corneal videokeratoscope. Results: Axial length: the difference between IOLMaster and ultrasound measures was insignificant (0.02 (SD 0.32) mm, p = 0.47) with no bias across the range sampled (22.40-27.99 mm). Anterior chamber depth: significantly shorter depths than ultrasound were found with the IOLMaster (-0.06 (0.25) mm, p <0.02) with no bias across the range sampled (2.85-4.40 mm). Corneal radius: IOLMaster measurements matched more closely those of the keratometer than those of the videokeratoscope (mean difference -0.03 v -0.06 mm respectively), but were more variable (95% confidence 0.13 v 0.07 mm). The repeatability of all the above IOLMaster biometric measures was found to be of a high order with no significant bias across the measurement ranges sampled. Conclusions: The validity and repeatability of measurements provided by the IOLMaster will augment future studies in ocular biometry.
Resumo:
Refraction simulators used for undergraduate training at Aston University did not realistically reflect variations in the relationship between vision and ametropia. This was because they used an algorithm, taken from the research literature, that strictly only applied to myopes or older hyperopes and did not factor in age and pupil diameter. The aim of this study was to generate new algorithms that overcame these limitations. Clinical data were collected from the healthy right eyes of 873 white subjects aged between 20 and 70 years. Vision and refractive error were recorded along with age and pupil diameter. Re-examination of 34 subjects enabled the calculation of coefficients of repeatability. The study population was slightly biased towards females and included many contact lens wearers. Sex and contact lens wear were, therefore, recorded in order to determine whether these might influence the findings. In addition, iris colour and cylinder axis orientation were recorded as these might also be influential. A novel Blur Sensitivity Ratio (BSR) was derived by dividing vision (expressed as minimum angle of resolution) by refractive error (expressed as a scalar vector, U). Alteration of the scalar vector, to account for additional vision reduction due to oblique cylinder axes, was not found to be useful. Decision tree analysis showed that sex, contact lens wear, iris colour and cylinder axis orientation did not influence the BSR. The following algorithms arose from two stepwise multiple linear regressions: BSR (myopes) = 1.13 + (0.24 x pupil diameter) + (0.14 x U) BSR (hyperopes) = (0.11 x pupil diameter) + (0.03 x age) - 0.22 These algorithms together accounted for 84% of the observed variance. They showed that pupil diameter influenced vision in both forms of ametropia. They also showed the age-related decline in the ability to accommodate in order to overcome reduced vision in hyperopia.
Resumo:
Purpose: Dementia is associated with various alterations of the eye and visual function. Over 60% of cases are attributable to Alzheimer's disease, a significant proportion of the remainder to vascular dementia or dementia with Lewy bodies, while frontotemporal dementia, and Parkinson's disease dementia are less common. This review describes the oculo-visual problems of these five dementias and the pathological changes which may explain these symptoms. It further discusses clinical considerations to help the clinician care for older patients affected by dementia. Recent findings: Visual problems in dementia include loss of visual acuity, defects in colour vision and visual masking tests, changes in pupillary response to mydriatics, defects in fixation and smooth and saccadic eye movements, changes in contrast sensitivity function and visual evoked potentials, and disturbance of complex visual functions such as in reading ability, visuospatial function, and the naming and identification of objects. Pathological changes have also been reported affecting the crystalline lens, retina, optic nerve, and visual cortex. Clinically, issues such as cataract surgery, correcting the refractive error, quality of life, falls, visual impairment and eye care for dementia have been addressed. Summary: Many visual changes occur across dementias, are controversial, often based on limited patient numbers, and no single feature can be regarded as diagnostic of any specific dementia. Nevertheless, visual hallucinations may be more characteristic of dementia with Lewy bodies and Parkinson's disease dementia than Alzheimer's disease or frontotemporal dementia. Differences in saccadic eye movement dysfunction may also help to distinguish Alzheimer's disease from frontotemporal dementia and Parkinson's disease dementia from dementia with Lewy bodies. Eye care professionals need to keep informed of the growing literature in vision/dementia, be attentive to signs and symptoms suggestive of cognitive impairment, and be able to adapt their practice and clinical interventions to best serve patients with dementia.
Resumo:
Anterior segment optical coherent tomography (AS-OCT, Visante; Zeiss) is used to examine meridional variation in anterior scleral thickness (AST) and its association with refractive error, ethnicity and gender. Scleral cross-sections of 74 individuals (28 males; 46 females; aged between 18-40 years (27.7±5.3)) were sampled twice in random order in 8 meridians: [superior (S), inferior (I), nasal (N), temporal (T), superior-temporal (ST), superior-nasal (SN), inferior-temporal (IT) and inferior-nasal (IN)]. AST was measured in 1mm anterior-toposterior increments (designated the A-P distance) from the scleral spur (SS) over a 6mm distance. Axial length and refractive error were measured with a Zeiss IOLMaster biometer and an open-view binocular Shin-Nippon autorefractor. Intra- And inter-observer variability of AST was assessed for each of the 8 meridians. Mixed repeated measures ANOVAs tested meridional and A-P distance differences in AST with refractive error, gender and ethnicity. Only right eye data were analysed. AST (mean±SD) across all meridians and A-P distances was 725±46μm. Meridian SN was the thinnest (662±57μm) and I the thickest (806 ±60μm). Significant differences were found between all meridians (p<0.001), except S:ST, IT:IN, IT:N and IN:N. Significant differences between A-P distances were found except between SS and 6 mm and between 2 and 4mm. AST measurements at 1mm (682±48 μm) were the thinnest and at 6mm (818±49 μm) the thickest (p<0.001); a significant interaction occurred between meridians and A-P distances (p<0.001). AST was significantly greater (p<0.001) in male subjects but no significant differences were found between refractive error or ethnicity. Significant variations in AST occur with regard to meridian and distance from the SS and may have utility in selecting optimum sites for pharmaceutical or surgical intervention.
Resumo:
Purpose: The Shin-Nippon SRW-5000 is an open view autorefractor that superseded the Canon R-1 autorefractor in the mid-1990s and has been used widely in optometry and vision science laboratories. It has been used to measure refractive error, accommodation responses both statically and dynamically, off-axis refractive error, and adapted to measure pupil size. This paper presents an overview of the original 2001 clinical evaluation of the SRW-5000 in adults (Mallen et al., Ophthal Physiol Opt 2001; 21: 101) and provides an update on the use and modification of the instrument since the original publication. Recent findings: The SRW-5000 instrument, and the family of devices which followed, have shown excellent validity, repeatability, and utility in clinical and research settings. The instruments have also shown great potential for increased research functionality following a number of modifications. Summary: The SRW-5000 and its derivatives have been, and continue to be, of significant importance in our drive to understand myopia progression, myopia control techniques, and oculomotor function in human vision.
Resumo:
Corneal surface laser ablation procedures for the correction of refractive error have enjoyed a resurgence of interest, especially in patients with a possible increased risk of complications after lamellar surgery. Improvements in the understanding of corneal biomechanical changes, the modulation of wound healing, laser technology including ablation profiles and different methods for epithelial removal have widened the scope for surface ablation. This article discusses photorefractive keratectomy, trans-epithelial photorefractive keratectomy, laser-assisted sub-epithelial keratomileusis and epithelial-laser-assisted in situ keratomileusis. © 2010 The Authors. Journal compilation © 2010 Royal Australian and New Zealand College of Ophthalmologists.
Resumo:
PURPOSE: To study, for the first time, the effect of wearing ready-made glasses and glasses with power determined by self-refraction on children's quality of life. METHODS: This is a randomized, double-masked non-inferiority trial. Children in grades 7 and 8 (age 12-15 years) in nine Chinese secondary schools, with presenting visual acuity (VA) ≤6/12 improved with refraction to ≥6/7.5 bilaterally, refractive error ≤-1.0 D and <2.0 D of anisometropia and astigmatism bilaterally, were randomized to receive ready-made spectacles (RM) or identical-appearing spectacles with power determined by: subjective cycloplegic retinoscopy by a university optometrist (U), a rural refractionist (R) or non-cycloplegic self-refraction (SR). Main study outcome was global score on the National Eye Institute Refractive Error Quality of Life-42 (NEI-RQL-42) after 2 months of wearing study glasses, comparing other groups with the U group, adjusting for baseline score. RESULTS: Only one child (0.18%) was excluded for anisometropia or astigmatism. A total of 426 eligible subjects (mean age 14.2 years, 84.5% without glasses at baseline) were allocated to U [103 (24.2%)], RM [113 (26.5%)], R [108 (25.4%)] and SR [102 (23.9%)] groups, respectively. Baseline and endline score data were available for 398 (93.4%) of subjects. In multiple regression models adjusting for baseline score, older age (p = 0.003) and baseline spectacle wear (p = 0.016), but not study group assignment, were significantly associated with lower final score. CONCLUSION: Quality of life wearing ready-mades or glasses based on self-refraction did not differ from that with cycloplegic refraction by an experienced optometrist in this non-inferiority trial.
Resumo:
Zero correlation between measurement error and model error has been assumed in existing panel data models dealing specifically with measurement error. We extend this literature and propose a simple model where one regressor is mismeasured, allowing the measurement error to correlate with model error. Zero correlation between measurement error and model error is a special case in our model where correlated measurement error equals zero. We ask two research questions. First, we wonder if the correlated measurement error can be identified in the context of panel data. Second, we wonder if classical instrumental variables in panel data need to be adjusted when correlation between measurement error and model error cannot be ignored. Under some regularity conditions the answer is yes to both questions. We then propose a two-step estimation corresponding to the two questions. The first step estimates correlated measurement error from a reverse regression; and the second step estimates usual coefficients of interest using adjusted instruments.
Resumo:
This thesis studies evaluation of software development practices through an error analysis. The work presents software development process, software testing, software errors, error classification and software process improvement methods. The practical part of the work presents results from the error analysis of one software process. It also gives improvement ideas for the project. It was noticed that the classification of the error data was inadequate in the project. Because of this it was impossible to use the error data effectively. With the error analysis we were able to show that there were deficiencies in design and analyzing phases, implementation phase and in testing phase. The work gives ideas for improving error classification and for software development practices.
Resumo:
It is becoming clear that if we are to impact the rate of medical errors it will have to be done at the practicing physician level. The purpose of this project was to survey the attitude of physicians in Alabama concerning their perception of medical error, and to obtain their thoughts and desires for medical education in the area of medical errors. The information will be used in the development of a physician education program.
Resumo:
Purpose: To calculate theoretically the errors in the estimation of corneal power when using the keratometric index (nk) in eyes that underwent laser refractive surgery for the correction of myopia and to define and validate clinically an algorithm for minimizing such errors. Methods: Differences between corneal power estimation by using the classical nk and by using the Gaussian equation in eyes that underwent laser myopic refractive surgery were simulated and evaluated theoretically. Additionally, an adjusted keratometric index (nkadj) model dependent on r1c was developed for minimizing these differences. The model was validated clinically by retrospectively using the data from 32 myopic eyes [range, −1.00 to −6.00 diopters (D)] that had undergone laser in situ keratomileusis using a solid-state laser platform. The agreement between Gaussian (PGaussc) and adjusted keratometric (Pkadj) corneal powers in such eyes was evaluated. Results: It was found that overestimations of corneal power up to 3.5 D were possible for nk = 1.3375 according to our simulations. The nk value to avoid the keratometric error ranged between 1.2984 and 1.3297. The following nkadj models were obtained: nkadj= −0.0064286r1c + 1.37688 (Gullstrand eye model) and nkadj = −0.0063804r1c + 1.37806 (Le Grand). The mean difference between Pkadj and PGaussc was 0.00 D, with limits of agreement of −0.45 and +0.46 D. This difference correlated significantly with the posterior corneal radius (r = −0.94, P < 0.01). Conclusions: The use of a single nk for estimating the corneal power in eyes that underwent a laser myopic refractive surgery can lead to significant errors. These errors can be minimized by using a variable nk dependent on r1c.
Resumo:
AIM: To evaluate the prediction error in intraocular lens (IOL) power calculation for a rotationally asymmetric refractive multifocal IOL and the impact on this error of the optimization of the keratometric estimation of the corneal power and the prediction of the effective lens position (ELP). METHODS: Retrospective study including a total of 25 eyes of 13 patients (age, 50 to 83y) with previous cataract surgery with implantation of the Lentis Mplus LS-312 IOL (Oculentis GmbH, Germany). In all cases, an adjusted IOL power (PIOLadj) was calculated based on Gaussian optics using a variable keratometric index value (nkadj) for the estimation of the corneal power (Pkadj) and on a new value for ELP (ELPadj) obtained by multiple regression analysis. This PIOLadj was compared with the IOL power implanted (PIOLReal) and the value proposed by three conventional formulas (Haigis, Hoffer Q and Holladay). RESULTS: PIOLReal was not significantly different than PIOLadj and Holladay IOL power (P>0.05). In the Bland and Altman analysis, PIOLadj showed lower mean difference (-0.07 D) and limits of agreement (of 1.47 and -1.61 D) when compared to PIOLReal than the IOL power value obtained with the Holladay formula. Furthermore, ELPadj was significantly lower than ELP calculated with other conventional formulas (P<0.01) and was found to be dependent on axial length, anterior chamber depth and Pkadj. CONCLUSION: Refractive outcomes after cataract surgery with implantation of the multifocal IOL Lentis Mplus LS-312 can be optimized by minimizing the keratometric error and by estimating ELP using a mathematical expression dependent on anatomical factors.
Resumo:
"Georgia Institute of Technology."