907 resultados para recommender system, user profiling, personalization, implicit feedbacks
Resumo:
Magdeburg, Univ., Fak. für Informatik, Diss., 2015
Resumo:
This thesis describes the development of a software requirements specification for a user-centric event management system. The system is set to satisfy three goals: adding value for the event attendees, adding value for the event organizer, and reducing the costs of arranging and running an event. The requirements are identified by researching the prescriptive traits of event business and the current state of the case company and its environment. First the professional and human needs for events are scrutinized. Second, some recent reports about the current trends in the event business are reviewed. Then the event life cycle is presented using the model of new service development, and online promotion of events and especially word-of-mouth marketing receive special attention. Events are also regarded from the perspective of social networks and social media. The case company’s current state and its competitors are reviewed to formulate the needs which the system should fulfil. Then the currently available solutions for social media oriented event management are reviewed. The result is a set of functional and non-functional requirements. The functional requirements are categorized into social media, social networking, event personalization, event management, and system administration features. The specified features and non-functional requirements satisfy the three goals set for the system.
Resumo:
Los sistemas de recomendación son potentes herramientas de filtrado de información que permiten a usuarios solicitar sugerencias sobre ítems que cubran sus necesidades. Tradicionalmente estas recomendaciones han estado basadas en opiniones de los mismos, así como en datos obtenidos de su consumo histórico o comportamiento en el propio sistema. Sin embargo, debido a la gran penetración y uso de los dispositivos móviles en nuestra sociedad, han surgido nuevas oportunidades en el campo de los sistemas de recomendación móviles gracias a la información contextual que se puede obtener sobre la localización o actividad de los usuarios. Debido a este estilo de vida en el que todo tiende a la movilidad y donde los usuarios están plenamente interconectados, la información contextual no sólo es física, sino que también adquiere una dimensión social. Todo esto ha dado lugar a una nueva área de investigación relacionada con los Sistemas de Recomendación Basados en Contexto (CARS) móviles donde se busca incrementar el nivel de personalización de las recomendaciones al usar dicha información. Por otro lado, este nuevo escenario en el que los usuarios llevan en todo momento un terminal móvil consigo abre la puerta a nuevas formas de recomendar. Sustituir el tradicional patrón de uso basado en petición-respuesta para evolucionar hacia un sistema proactivo es ahora posible. Estos sistemas deben identificar el momento más adecuado para generar una recomendación sin una petición explícita del usuario, siendo para ello necesario analizar su contexto. Esta tesis doctoral propone un conjunto de modelos, algoritmos y métodos orientados a incorporar proactividad en CARS móviles, a la vez que se estudia el impacto que este tipo de recomendaciones tienen en la experiencia de usuario con el fin de extraer importantes conclusiones sobre "qué", "cuándo" y "cómo" se debe notificar proactivamente. Con este propósito, se comienza planteando una arquitectura general para construir CARS móviles en escenarios sociales. Adicionalmente, se propone una nueva forma de representar el proceso de recomendación a través de una interfaz REST, lo que permite crear una arquitectura independiente de dispositivo y plataforma. Los detalles de su implementación tras su puesta en marcha en el entorno bancario español permiten asimismo validar el sistema construido. Tras esto se presenta un novedoso modelo para incorporar proactividad en CARS móviles. Éste muestra las ideas principales que permiten analizar una situación para decidir cuándo es apropiada una recomendación proactiva. Para ello se presentan algoritmos que establecen relaciones entre lo propicia que es una situación y cómo esto influye en los elementos a recomendar. Asimismo, para demostrar la viabilidad de este modelo se describe su aplicación a un escenario de recomendación para herramientas de creación de contenidos educativos. Siguiendo el modelo anterior, se presenta el diseño e implementación de nuevos interfaces móviles de usuario para recomendaciones proactivas, así como los resultados de su evaluación entre usuarios, lo que aportó importantes conclusiones para identificar cuáles son los factores más relevantes a considerar en el diseño de sistemas proactivos. A raíz de los resultados anteriores, el último punto de esta tesis presenta una metodología para calcular cuán apropiada es una situación de cara a recomendar de manera proactiva siguiendo el modelo propuesto. Como conclusión, se describe la validación llevada a cabo tras la aplicación de la arquitectura, modelo de recomendación y métodos descritos en este trabajo en una red social de aprendizaje europea. Finalmente, esta tesis discute las conclusiones obtenidas a lo largo de la extensa investigación llevada a cabo, y que ha propiciado la consecución de una buena base teórica y práctica para la creación de sistemas de recomendación móviles proactivos basados en información contextual. ABSTRACT Recommender systems are powerful information filtering tools which offer users personalized suggestions about items whose aim is to satisfy their needs. Traditionally the information used to make recommendations has been based on users’ ratings or data on the item’s consumption history and transactions carried out in the system. However, due to the remarkable growth in mobile devices in our society, new opportunities have arisen to improve these systems by implementing them in ubiquitous environments which provide rich context-awareness information on their location or current activity. Because of this current all-mobile lifestyle, users are socially connected permanently, which allows their context to be enhanced not only with physical information, but also with a social dimension. As a result of these novel contextual data sources, the advent of mobile Context-Aware Recommender Systems (CARS) as a research area has appeared to improve the level of personalization in recommendation. On the other hand, this new scenario in which users have their mobile devices with them all the time offers the possibility of looking into new ways of making recommendations. Evolving the traditional user request-response pattern to a proactive approach is now possible as a result of this rich contextual scenario. Thus, the key idea is that recommendations are made to the user when the current situation is appropriate, attending to the available contextual information without an explicit user request being necessary. This dissertation proposes a set of models, algorithms and methods to incorporate proactivity into mobile CARS, while the impact of proactivity is studied in terms of user experience to extract significant outcomes as to "what", "when" and "how" proactive recommendations have to be notified to users. To this end, the development of this dissertation starts from the proposal of a general architecture for building mobile CARS in scenarios with rich social data along with a new way of managing a recommendation process through a REST interface to make this architecture multi-device and cross-platform compatible. Details as regards its implementation and evaluation in a Spanish banking scenario are provided to validate its usefulness and user acceptance. After that, a novel model is presented for proactivity in mobile CARS which shows the key ideas related to decide when a situation warrants a proactive recommendation by establishing algorithms that represent the relationship between the appropriateness of a situation and the suitability of the candidate items to be recommended. A validation of these ideas in the area of e-learning authoring tools is also presented. Following the previous model, this dissertation presents the design and implementation of new mobile user interfaces for proactive notifications. The results of an evaluation among users testing these novel interfaces is also shown to study the impact of proactivity in the user experience of mobile CARS, while significant factors associated to proactivity are also identified. The last stage of this dissertation merges the previous outcomes to design a new methodology to calculate the appropriateness of a situation so as to incorporate proactivity into mobile CARS. Additionally, this work provides details about its validation in a European e-learning social network in which the whole architecture and proactive recommendation model together with its methods have been implemented. Finally, this dissertation opens up a discussion about the conclusions obtained throughout this research, resulting in useful information from the different design and implementation stages of proactive mobile CARS.
Resumo:
Distributed Computing frameworks belong to a class of programming models that allow developers to
launch workloads on large clusters of machines. Due to the dramatic increase in the volume of
data gathered by ubiquitous computing devices, data analytic workloads have become a common
case among distributed computing applications, making Data Science an entire field of
Computer Science. We argue that Data Scientist's concern lays in three main components: a dataset,
a sequence of operations they wish to apply on this dataset, and some constraint they may have
related to their work (performances, QoS, budget, etc). However, it is actually extremely
difficult, without domain expertise, to perform data science. One need to select the right amount
and type of resources, pick up a framework, and configure it. Also, users are often running their
application in shared environments, ruled by schedulers expecting them to specify precisely their resource
needs. Inherent to the distributed and concurrent nature of the cited frameworks, monitoring and
profiling are hard, high dimensional problems that block users from making the right
configuration choices and determining the right amount of resources they need. Paradoxically, the
system is gathering a large amount of monitoring data at runtime, which remains unused.
In the ideal abstraction we envision for data scientists, the system is adaptive, able to exploit
monitoring data to learn about workloads, and process user requests into a tailored execution
context. In this work, we study different techniques that have been used to make steps toward
such system awareness, and explore a new way to do so by implementing machine learning
techniques to recommend a specific subset of system configurations for Apache Spark applications.
Furthermore, we present an in depth study of Apache Spark executors configuration, which highlight
the complexity in choosing the best one for a given workload.
Resumo:
Background: High-throughput molecular approaches for gene expression profiling, such as Serial Analysis of Gene Expression (SAGE), Massively Parallel Signature Sequencing (MPSS) or Sequencing-by-Synthesis (SBS) represent powerful techniques that provide global transcription profiles of different cell types through sequencing of short fragments of transcripts, denominated sequence tags. These techniques have improved our understanding about the relationships between these expression profiles and cellular phenotypes. Despite this, more reliable datasets are still necessary. In this work, we present a web-based tool named S3T: Score System for Sequence Tags, to index sequenced tags in accordance with their reliability. This is made through a series of evaluations based on a defined rule set. S3T allows the identification/selection of tags, considered more reliable for further gene expression analysis. Results: This methodology was applied to a public SAGE dataset. In order to compare data before and after filtering, a hierarchical clustering analysis was performed in samples from the same type of tissue, in distinct biological conditions, using these two datasets. Our results provide evidences suggesting that it is possible to find more congruous clusters after using S3T scoring system. Conclusion: These results substantiate the proposed application to generate more reliable data. This is a significant contribution for determination of global gene expression profiles. The library analysis with S3T is freely available at http://gdm.fmrp.usp.br/s3t/.S3T source code and datasets can also be downloaded from the aforementioned website.
Resumo:
One of the e-learning environment goal is to attend the individual needs of students during the learning process. The adaptation of contents, activities and tools into different visualization or in a variety of content types is an important feature of this environment, bringing to the user the sensation that there are suitable workplaces to his profile in the same system. Nevertheless, it is important the investigation of student behaviour aspects, considering the context where the interaction happens, to achieve an efficient personalization process. The paper goal is to present an approach to identify the student learning profile analyzing the context of interaction. Besides this, the learning profile could be analyzed in different dimensions allows the system to deal with the different focus of the learning.
Resumo:
This paper presents an analysis of the performance of a baseband multiple-input single-output (MISO) time reversal ultra-wideband system (TR-UWB) incorporating a symbol spaced decision feedback equalizer (DFE). A semi-analytical performance analysis based on a Gaussian approach is considered, which matched well with simulation results, even for the DFE case. The channel model adopted is based on the IEEE 802.15.3a model, considering correlated shadowing across antenna elements. In order to provide a more realistic analysis, channel estimation errors are considered for the design of the TR filter. A guideline for the choice of equalizer length is provided. The results show that the system`s performance improves with an increase in the number of transmit antennas and when a symbol spaced equalizer is used with a relatively small number of taps compared to the number of resolvable paths in the channel impulse response. Moreover, it is possible to conclude that due to the time reversal scheme, the error propagation in the DFE does not play a role in the system`s performance.
Resumo:
he expansion of Digital Television and the convergence between conventional broadcasting and television over IP contributed to the gradual increase of the number of available channels and on demand video content. Moreover, the dissemination of the use of mobile devices like laptops, smartphones and tablets on everyday activities resulted in a shift of the traditional television viewing paradigm from the couch to everywhere, anytime from any device. Although this new scenario enables a great improvement in viewing experiences, it also brings new challenges given the overload of information that the viewer faces. Recommendation systems stand out as a possible solution to help a watcher on the selection of the content that best fits his/her preferences. This paper describes a web based system that helps the user navigating on broadcasted and online television content by implementing recommendations based on collaborative and content based filtering. The algorithms developed estimate the similarity between items and users and predict the rating that a user would assign to a particular item (television program, movie, etc.). To enable interoperability between different systems, programs characteristics (title, genre, actors, etc.) are stored according to the TV-Anytime standard. The set of recommendations produced are presented through a Web Application that allows the user to interact with the system based on the obtained recommendations.
Resumo:
Dissertação para obtenção do Grau de Mestre em Engenharia Biomédica
Resumo:
Dissertação para obtenção do Grau de Mestre em Engenharia Informática
Resumo:
BACKGROUND: DNA sequence integrity, mRNA concentrations and protein-DNA interactions have been subject to genome-wide analyses based on microarrays with ever increasing efficiency and reliability over the past fifteen years. However, very recently novel technologies for Ultra High-Throughput DNA Sequencing (UHTS) have been harnessed to study these phenomena with unprecedented precision. As a consequence, the extensive bioinformatics environment available for array data management, analysis, interpretation and publication must be extended to include these novel sequencing data types. DESCRIPTION: MIMAS was originally conceived as a simple, convenient and local Microarray Information Management and Annotation System focused on GeneChips for expression profiling studies. MIMAS 3.0 enables users to manage data from high-density oligonucleotide SNP Chips, expression arrays (both 3'UTR and tiling) and promoter arrays, BeadArrays as well as UHTS data using MIAME-compliant standardized vocabulary. Importantly, researchers can export data in MAGE-TAB format and upload them to the EBI's ArrayExpress certified data repository using a one-step procedure. CONCLUSION: We have vastly extended the capability of the system such that it processes the data output of six types of GeneChips (Affymetrix), two different BeadArrays for mRNA and miRNA (Illumina) and the Genome Analyzer (a popular Ultra-High Throughput DNA Sequencer, Illumina), without compromising on its flexibility and user-friendliness. MIMAS, appropriately renamed into Multiomics Information Management and Annotation System, is currently used by scientists working in approximately 50 academic laboratories and genomics platforms in Switzerland and France. MIMAS 3.0 is freely available via http://multiomics.sourceforge.net/.
Resumo:
While mobile technologies can provide great personalized services for mobile users, they also threaten their privacy. Such personalization-privacy paradox are particularly salient for context aware technology based mobile applications where user's behaviors, movement and habits can be associated with a consumer's personal identity. In this thesis, I studied the privacy issues in the mobile context, particularly focus on an adaptive privacy management system design for context-aware mobile devices, and explore the role of personalization and control over user's personal data. This allowed me to make multiple contributions, both theoretical and practical. In the theoretical world, I propose and prototype an adaptive Single-Sign On solution that use user's context information to protect user's private information for smartphone. To validate this solution, I first proved that user's context is a unique user identifier and context awareness technology can increase user's perceived ease of use of the system and service provider's authentication security. I then followed a design science research paradigm and implemented this solution into a mobile application called "Privacy Manager". I evaluated the utility by several focus group interviews, and overall the proposed solution fulfilled the expected function and users expressed their intentions to use this application. To better understand the personalization-privacy paradox, I built on the theoretical foundations of privacy calculus and technology acceptance model to conceptualize the theory of users' mobile privacy management. I also examined the role of personalization and control ability on my model and how these two elements interact with privacy calculus and mobile technology model. In the practical realm, this thesis contributes to the understanding of the tradeoff between the benefit of personalized services and user's privacy concerns it may cause. By pointing out new opportunities to rethink how user's context information can protect private data, it also suggests new elements for privacy related business models.
Resumo:
The Andalusian Public Health System Virtual Library (Biblioteca Virtual del Sistema Sanitario Público de Andalucía, BV-SSPA) provides access to health information resources and services to healthcare professionals through its Website. This virtual environment demands higher users’ knowledge in order to satisfy of the need of information of our users, as digital natives as digital immigrants, improving at the same time the communication with all of them. 1. To collect clients' views and expectations according to their nature of digital natives and immigrants. 2. To know our online reputation. A Collecting User Expectation Questionnaire will be built, taking into account the segmentation of the BV-SSPA users’ professional groups of the Andalusian Public Health System. A pilot test will be run to check the survey dimensions and items about practices, attitudes and knowledge of our users. Two Quality Function Deployment (QFD) matrices will enable the BV-SSPA services to be targeted to our digital natives or digital immigrants, according to their nature, finding the best way to satisfy their information needs. We provide feedback on BV-SSPA: users can have the opportunity to post feedback about the site via the 'Contact us' section and comment about their experience. And Web 2.0 is a shop window, providing the opportunity to show the comments; and through time, our online reputation will be built, but the BV-SSPA must manage its own personal branding. Web 2.0 tools are a driver of improvement, because they provide a key source of insight into people's attitudes. Besides, the BV-SSPA digital identity will be analyzed through indicators like major search engine referrals breakdown, top referring sites (non search engines), or top search engine referral phrases, among others. Definition of digital native and digital immigrant profiles of the BV-SSPA, and their difference, will be explained by their expectations. The design of the two QFD matrices will illustrate in just one graph the requirements of both groups for tackling digital abilities and inequalities. The BV-SSPA could deliver information and services through alternative channels. On the other hand, we are developing a strategy to identify, to measure and to manage a digital identity through communication with the user and to find out our online reputation. With the use of different tools from quantitative and qualitative methodology, and the opportunities offered by Web 2.0 tools, the BV-SSPA will know the expectations of their users as a first step to satisfy their necessities. Personalization is pivotal to the success of the Site, delivering tailored content to individuals based on their recorded preferences. The valuable user research can be used during new product development and redesign. Besides positive interaction let us build trust, show authenticity, and foster loyalty: we improve with effort, communication and show.
Resumo:
A high-resolution three-dimensional (3D) seismic reflection system for small-scale targets in lacustrine settings has been developed. Its main characteristics include navigation and shot-triggering software that fires the seismic source at regular distance intervals (max. error of 0.25 m) with real-time control on navigation using differential GPS (Global Positioning System). Receiver positions are accurately calculated (error < 0.20 m) with the aid of GPS antennas attached to the end of each of three 24-channel streamers. Two telescopic booms hold the streamers at a distance of 7.5 m from each other. With a receiver spacing of 2.5 m, the bin dimension is 1.25 m in inline and 3.75 m in crossline direction. To test the system, we conducted a 3D survey of about 1 km(2) in Lake Geneva, Switzerland, over a complex fault zone. A 5-m shot spacing resulted in a nominal fold of 6. A double-chamber bubble-cancelling 15/15 in(3) air gun (40-650 Hz) operated at 80 bars and 1 m depth gave a signal penetration of 300 m below water bottom and a best vertical resolution of 1.1 m. Processing followed a conventional scheme, but had to be adapted to the high sampling rates, and our unconventional navigation data needed conversion to industry standards. The high-quality data enabled us to construct maps of seismic horizons and fault surfaces in three dimensions. The system proves to be well adapted to investigate complex structures by providing non-aliased images of reflectors with dips up to 30 degrees.
Resumo:
Tässä diplomityössä tutkitaan automatisoitua testausta ja käyttöliittymätestauksen tekemistä helpommaksi Symbian-käyttöjärjestelmässä. Työssä esitellään Symbian ja Symbian-sovelluskehityksessä kohdattavia haasteita. Lisäksi kerrotaan testausstrategioista ja -tavoista sekä automatisoidusta testaamisesta. Lopuksi esitetään työkalu, jolla testitapausten luominen toiminnalisuus- ja järjestelmätestaukseen tehdään helpommaksi. Graafiset käyttöliittymättuovat ainutlaatuisia haasteita ohjelmiston testaamiseen. Ne tehdään usein monimutkaisista komponenteista ja niitä suunnitellaan jatkuvasti uusiksi ohjelmistokehityksen aikana. Graafisten käyttöliittymien testaukseen käytetään usein kaappaus- ja toistotyökaluja. Käyttöliittymätestauksen testitapausten suunnittelu ja toteutus vaatii paljon panostusta. Koska graafiset käyttöliittymät muodostavat suuren osan koodista, voitaisiin säästää paljon resursseja tekemällä testitapausten luomisesta helpompaa. Käytännön osuudessa toteutettu projekti pyrkii tähän tekemällä testiskriptien luomisesta visuaalista. Näin ollen itse testien skriptikieltä ei tarvitse ymmärtää ja testien hahmottaminen on myös helpompaa.