900 resultados para recommender system, user profiling, personalization, implicit feedbacks
Resumo:
We consider the task of collaborative recommendation of photo-taking locations. We use datasets of geotagged photos. We map their locations to a location grid using a geohashing algorithm, resulting in a user x location implicit feedback matrix. Our improvements relative to previous work are twofold. First, we create virtual ratings by spreading users' preferences to neighbouring grid locations. This makes the assumption that users have some preference for locations close to the ones in which they take their photos. These virtual ratings help overcome the discrete nature of the geohashing. Second, we normalize the implicit frequency-based ratings to a 1-5 scale using a method that has been found to be useful in music recommendation algorithms. We demonstrate the advantages of our approach with new experiments that show large increases in hit rate and related metrics.
Resumo:
A remarkable growth in quantity and popularity of online social networks has been observed in recent years. There is a good number of online social networks exists which have over 100 million registered users. Many of these popular social networks offer automated recommendations to their users. This automated recommendations are normally generated using collaborative filtering systems based on the past ratings or opinions of the similar users. Alternatively, trust among the users in the network also can be used to find the neighbors while making recommendations. To obtain the optimum result, there must be a positive correlation exists between trust and interest similarity. Though the positive relations between trust and interest similarity are assumed and adopted by many researchers; no survey work on real life people’s opinion to support this hypothesis is found. In this paper, we have reviewed the state-of-the-art research work on trust in online social networks and have presented the result of the survey on the relationship between trust and interest similarity. Our result supports the assumed hypothesis of positive relationship between the trust and interest similarity of the users.
Resumo:
It is a big challenge to acquire correct user profiles for personalized text classification since users may be unsure in providing their interests. Traditional approaches to user profiling adopt machine learning (ML) to automatically discover classification knowledge from explicit user feedback in describing personal interests. However, the accuracy of ML-based methods cannot be significantly improved in many cases due to the term independence assumption and uncertainties associated with them. This paper presents a novel relevance feedback approach for personalized text classification. It basically applies data mining to discover knowledge from relevant and non-relevant text and constraints specific knowledge by reasoning rules to eliminate some conflicting information. We also developed a Dempster-Shafer (DS) approach as the means to utilise the specific knowledge to build high-quality data models for classification. The experimental results conducted on Reuters Corpus Volume 1 and TREC topics support that the proposed technique achieves encouraging performance in comparing with the state-of-the-art relevance feedback models.
Resumo:
Over the last decade, the majority of existing search techniques is either keyword- based or category-based, resulting in unsatisfactory effectiveness. Meanwhile, studies have illustrated that more than 80% of users preferred personalized search results. As a result, many studies paid a great deal of efforts (referred to as col- laborative filtering) investigating on personalized notions for enhancing retrieval performance. One of the fundamental yet most challenging steps is to capture precise user information needs. Most Web users are inexperienced or lack the capability to express their needs properly, whereas the existent retrieval systems are highly sensitive to vocabulary. Researchers have increasingly proposed the utilization of ontology-based tech- niques to improve current mining approaches. The related techniques are not only able to refine search intentions among specific generic domains, but also to access new knowledge by tracking semantic relations. In recent years, some researchers have attempted to build ontological user profiles according to discovered user background knowledge. The knowledge is considered to be both global and lo- cal analyses, which aim to produce tailored ontologies by a group of concepts. However, a key problem here that has not been addressed is: how to accurately match diverse local information to universal global knowledge. This research conducts a theoretical study on the use of personalized ontolo- gies to enhance text mining performance. The objective is to understand user information needs by a \bag-of-concepts" rather than \words". The concepts are gathered from a general world knowledge base named the Library of Congress Subject Headings. To return desirable search results, a novel ontology-based mining approach is introduced to discover accurate search intentions and learn personalized ontologies as user profiles. The approach can not only pinpoint users' individual intentions in a rough hierarchical structure, but can also in- terpret their needs by a set of acknowledged concepts. Along with global and local analyses, another solid concept matching approach is carried out to address about the mismatch between local information and world knowledge. Relevance features produced by the Relevance Feature Discovery model, are determined as representatives of local information. These features have been proven as the best alternative for user queries to avoid ambiguity and consistently outperform the features extracted by other filtering models. The two attempt-to-proposed ap- proaches are both evaluated by a scientific evaluation with the standard Reuters Corpus Volume 1 testing set. A comprehensive comparison is made with a num- ber of the state-of-the art baseline models, including TF-IDF, Rocchio, Okapi BM25, the deploying Pattern Taxonomy Model, and an ontology-based model. The gathered results indicate that the top precision can be improved remarkably with the proposed ontology mining approach, where the matching approach is successful and achieves significant improvements in most information filtering measurements. This research contributes to the fields of ontological filtering, user profiling, and knowledge representation. The related outputs are critical when systems are expected to return proper mining results and provide personalized services. The scientific findings have the potential to facilitate the design of advanced preference mining models, where impact on people's daily lives.
Resumo:
Big Data presents many challenges related to volume, whether one is interested in studying past datasets or, even more problematically, attempting to work with live streams of data. The most obvious challenge, in a ‘noisy’ environment such as contemporary social media, is to collect the pertinent information; be that information for a specific study, tweets which can inform emergency services or other responders to an ongoing crisis, or give an advantage to those involved in prediction markets. Often, such a process is iterative, with keywords and hashtags changing with the passage of time, and both collection and analytic methodologies need to be continually adapted to respond to this changing information. While many of the data sets collected and analyzed are preformed, that is they are built around a particular keyword, hashtag, or set of authors, they still contain a large volume of information, much of which is unnecessary for the current purpose and/or potentially useful for future projects. Accordingly, this panel considers methods for separating and combining data to optimize big data research and report findings to stakeholders. The first paper considers possible coding mechanisms for incoming tweets during a crisis, taking a large stream of incoming tweets and selecting which of those need to be immediately placed in front of responders, for manual filtering and possible action. The paper suggests two solutions for this, content analysis and user profiling. In the former case, aspects of the tweet are assigned a score to assess its likely relationship to the topic at hand, and the urgency of the information, whilst the latter attempts to identify those users who are either serving as amplifiers of information or are known as an authoritative source. Through these techniques, the information contained in a large dataset could be filtered down to match the expected capacity of emergency responders, and knowledge as to the core keywords or hashtags relating to the current event is constantly refined for future data collection. The second paper is also concerned with identifying significant tweets, but in this case tweets relevant to particular prediction market; tennis betting. As increasing numbers of professional sports men and women create Twitter accounts to communicate with their fans, information is being shared regarding injuries, form and emotions which have the potential to impact on future results. As has already been demonstrated with leading US sports, such information is extremely valuable. Tennis, as with American Football (NFL) and Baseball (MLB) has paid subscription services which manually filter incoming news sources, including tweets, for information valuable to gamblers, gambling operators, and fantasy sports players. However, whilst such services are still niche operations, much of the value of information is lost by the time it reaches one of these services. The paper thus considers how information could be filtered from twitter user lists and hash tag or keyword monitoring, assessing the value of the source, information, and the prediction markets to which it may relate. The third paper examines methods for collecting Twitter data and following changes in an ongoing, dynamic social movement, such as the Occupy Wall Street movement. It involves the development of technical infrastructure to collect and make the tweets available for exploration and analysis. A strategy to respond to changes in the social movement is also required or the resulting tweets will only reflect the discussions and strategies the movement used at the time the keyword list is created — in a way, keyword creation is part strategy and part art. In this paper we describe strategies for the creation of a social media archive, specifically tweets related to the Occupy Wall Street movement, and methods for continuing to adapt data collection strategies as the movement’s presence in Twitter changes over time. We also discuss the opportunities and methods to extract data smaller slices of data from an archive of social media data to support a multitude of research projects in multiple fields of study. The common theme amongst these papers is that of constructing a data set, filtering it for a specific purpose, and then using the resulting information to aid in future data collection. The intention is that through the papers presented, and subsequent discussion, the panel will inform the wider research community not only on the objectives and limitations of data collection, live analytics, and filtering, but also on current and in-development methodologies that could be adopted by those working with such datasets, and how such approaches could be customized depending on the project stakeholders.
Resumo:
This research contributes a fully-operational approach for managing business process risk in near real-time. The approach consists of a language for defining risks on top of process models, a technique to detect such risks as they eventuate during the execution of business processes, a recommender system for making risk-informed decisions, and a technique to automatically mitigate the detected risks when they are no longer tolerable. Through the incorporation of risk management elements in all stages of the lifecycle of business processes, this work contributes to the effective integration of the fields of Business Process Management and Risk Management.
Resumo:
Trata-se de um estudo descritivo, de abordagem qualitativa, do tipo estudo de caso, cujo objetivo é analisar a Estratégia Saúde da Família (ESF) através da perspectiva do seu usuário, verificando o grau de correspondência entre os serviços oferecidos pela ESF e a proposta oficial, norteadora da Estratégia. Neste intuito, realizamos entrevistas com usuários cadastrados na Unidade de Saúde da Família - Centro, no município de Piraí, interior do estado do Rio de Janeiro. Na busca do arcabouço teórico, nos aprofundamos em temas como qualidade dos serviços de saúde, Sistema Único de Saúde, no Programa de Agentes Comunitários de Saúde e Saúde da Família. Ao analisarmos os resultados, dividimos os achados em três categorias. São elas: caracterizando os sujeitos; utilização dos serviços de saúde à luz do acesso, acolhimento e vínculo e, por fim, a percepção do usuário: avaliação, crítica, elogio e sugestão. Ao fim da pesquisa, concluímos que, como todo serviço, necessita ser avaliado e monitorado, levando em consideração as críticas e elogios abordados, buscando melhor qualificação. Acreditamos que repensar o modelo de atenção à saúde, dentro da perspectiva para qual aponta a estratégia saúde da família, implica em assegurar correspondência entre os serviços de saúde e as expectativas e valores socioculturais da população usuária.
Resumo:
随着信息过载问题越来越突出,如何有获地提取互联网上的信息成为近年来的一个研究热点。个性化推荐系统(Personalized Recommender System)利用用户的兴趣为其推荐最相关的互联网信息,已成功部署于搜索引擎、电子商务、网上社区等互联网关键应用中,是信息检索界的一个突破性的领域。个性化推荐系统的广泛商业应用对其性能提出了严格的要求,而数据的稀疏性和海量性 大大限制了推荐的质量。为了获得更高的准确性和可扩展性,协同过滤方法的 成功应用提供了一条解决之路。协同过滤的思想是利用兴趣相投、经验相似的 群体的喜好来为其内部成员推荐感兴趣的信息,用户通过如评分等的机制表现 自己的偏好以达到为自己和他人过滤信息的目的。作为目前最成功的推荐方法, 协同过滤的应用已经比较成熟。然而这种推荐系统仍有很大改进余地。 标签网络(Folksonomy)是一种最近兴起的社会网络资源,用户通过对浏览 过的物品进行注释或给予标签达到对其归类的作用。像这样对同一物品集合的给予标签的行为就形成这被称为标签网络的社会网络。协同过滤的思想无疑可以用于这些数据,为这些用户对这一物品集合内的元素给予推荐。将标签网络数据融入原基于评分的推荐系统,是我们的主要贡献之一。我们提出了两种具体地使用标签网络数据辅助评分预测的方法。一种是友邻方法,直接利用聚类方法寻找相似的用户或物品;另一种是联合矩阵分解,利用机器学习领域的矩阵分解拟合未知元素的方法预测评分。这两种方法的想法的初衷均来源于协同过滤技术面对的数据的一个棘手的特性,数据稀疏性。伴随着协同过滤的发展还有另外一个问题,那就是数量的巨大维度。对这一问题,我们提出了一种增量化方法使推荐系统适应目益增长的数据量。协同过滤方法中有一大类是利用聚类算法做出推荐,我们所提出的改进细化了聚类算法的粒度,使每次聚类都是有针对性地对小容量的集合进行操作。我们将改进的矩阵分解方法应用于每个集合的聚类操作上,使得相似的用户和物品之间的关系更加紧密。这在数据更新率很高的情况下可以避免不断重新将整个数据集进行训练的问题。我们通过实验对比了流行的若干种推荐算法,证明了我们所提出的方法均有着比较大的性能提升。不仅仅拥有更高的准确性,而且也拥有非常好的可扩展性(即算法时间复杂度与数据规模线性相关)。
Resumo:
A large computer program has been developed to aid applied mathematicians in the solution of problems in non-numerical analysis which involve tedious manipulations of mathematical expressions. The mathematician uses typed commands and a light pen to direct the computer in the application of mathematical transformations; the intermediate results are displayed in standard text-book format so that the system user can decide the next step in the problem solution. Three problems selected from the literature have been solved to illustrate the use of the system. A detailed analysis of the problems of input, transformation, and display of mathematical expressions is also presented.
Resumo:
Nos últimos anos, a nossa sociedade sofreu alterações significativas ao nível tecnológico que têm vindo a modificar o quotidiano do cidadão e transportaram para a palma da mão um conjunto significativo de tarefas até há poucos anos impensáveis. Atualmente, torna-se possível realizar as mais simples tarefas como, a título de exemplo, efetuar um cálculo matemático, tirar fotografias ou registar numa agenda um compromisso, ou tarefas mais complexas, como por exemplo, escrever ou editar um documento, trabalhar numa folha de cálculo ou enviar um e-mail com um anexo, isto tudo com o recurso a um simples dispositivo móvel, conhecido como smartphone ou tablet. Apesar de existirem diversos tipos de apps que seriam um bom auxílio para o aumento da produtividade dos utilizadores de dispositivos móveis Android, nem todos têm conhecimento das mesmas, pelo que é importante que os utilizadores tenham conhecimentos das vantagens da utilização destes recursos e de tudo o que podem realizar com os seus dispositivos com o objetivo de aumentar a sua produtividade profissional ou pessoal. O presente estudo pretende contribuir para uma análise sobre a potencial utilização das novas tecnologias, mais propriamente estudando e recomendando apps de produtividade. Com este intuito foi criada uma app de recomendação de aplicações de produtividade com recurso a um método de sistemas de recomendação. São apresentados os resultados e as conclusões, com recurso a opiniões de potenciais utilizadores.
Resumo:
Quand le E-learning a émergé il ya 20 ans, cela consistait simplement en un texte affiché sur un écran d'ordinateur, comme un livre. Avec les changements et les progrès dans la technologie, le E-learning a parcouru un long chemin, maintenant offrant un matériel éducatif personnalisé, interactif et riche en contenu. Aujourd'hui, le E-learning se transforme de nouveau. En effet, avec la prolifération des systèmes d'apprentissage électronique et des outils d'édition de contenu éducatif, ainsi que les normes établies, c’est devenu plus facile de partager et de réutiliser le contenu d'apprentissage. En outre, avec le passage à des méthodes d'enseignement centrées sur l'apprenant, en plus de l'effet des techniques et technologies Web2.0, les apprenants ne sont plus seulement les récipiendaires du contenu d'apprentissage, mais peuvent jouer un rôle plus actif dans l'enrichissement de ce contenu. Par ailleurs, avec la quantité d'informations que les systèmes E-learning peuvent accumuler sur les apprenants, et l'impact que cela peut avoir sur leur vie privée, des préoccupations sont soulevées afin de protéger la vie privée des apprenants. Au meilleur de nos connaissances, il n'existe pas de solutions existantes qui prennent en charge les différents problèmes soulevés par ces changements. Dans ce travail, nous abordons ces questions en présentant Cadmus, SHAREK, et le E-learning préservant la vie privée. Plus précisément, Cadmus est une plateforme web, conforme au standard IMS QTI, offrant un cadre et des outils adéquats pour permettre à des tuteurs de créer et partager des questions de tests et des examens. Plus précisément, Cadmus fournit des modules telles que EQRS (Exam Question Recommender System) pour aider les tuteurs à localiser des questions appropriées pour leur examens, ICE (Identification of Conflits in Exams) pour aider à résoudre les conflits entre les questions contenu dans un même examen, et le Topic Tree, conçu pour aider les tuteurs à mieux organiser leurs questions d'examen et à assurer facilement la couverture des différent sujets contenus dans les examens. D'autre part, SHAREK (Sharing REsources and Knowledge) fournit un cadre pour pouvoir profiter du meilleur des deux mondes : la solidité des systèmes E-learning et la flexibilité de PLE (Personal Learning Environment) tout en permettant aux apprenants d'enrichir le contenu d'apprentissage, et les aider à localiser nouvelles ressources d'apprentissage. Plus précisément, SHAREK combine un système recommandation multicritères, ainsi que des techniques et des technologies Web2.0, tels que le RSS et le web social, pour promouvoir de nouvelles ressources d'apprentissage et aider les apprenants à localiser du contenu adapté. Finalement, afin de répondre aux divers besoins de la vie privée dans le E-learning, nous proposons un cadre avec quatre niveaux de vie privée, ainsi que quatre niveaux de traçabilité. De plus, nous présentons ACES (Anonymous Credentials for E-learning Systems), un ensemble de protocoles, basés sur des techniques cryptographiques bien établies, afin d'aider les apprenants à atteindre leur niveau de vie privée désiré.
Resumo:
En este art??culo se presenta un sistema de di??logo hablado en desarrollo llamado TRIVIAL, cuya finalidad es favorecer el aprendizaje de contenidos docentes por parte de los alumnos de la Universidad de Granada. La interacci??n entre los usuarios y el sistema se lleva a cabo mediante di??logos en lenguaje natural realizados de forma oral, por lo que el sistema se diferencia claramente de otras herramientas de apoyo a la docencia basadas en Tecnolog??as de la Informaci??n y las Comunicaciones (TICs). Creemos que el sistema puede fomentar el desarrollo del espacio innovador promovido por el Espacio Europeo de Educaci??n Superior (EEES), pues permite dar una visi??n diferente de las asignaturas, en la que el alumno es el actor principal del proceso de aprendizaje.
Resumo:
La principal contribución de esta Tesis es la propuesta de un modelo de agente BDI graduado (g-BDI) que permita especificar una arquitetura de agente capaz de representar y razonar con actitudes mentales graduadas. Consideramos que una arquitectura BDI más exible permitirá desarrollar agentes que alcancen mejor performance en entornos inciertos y dinámicos, al servicio de otros agentes (humanos o no) que puedan tener un conjunto de motivaciones graduadas. En el modelo g-BDI, las actitudes graduadas del agente tienen una representación explícita y adecuada. Los grados en las creencias representan la medida en que el agente cree que una fórmula es verdadera, en los deseos positivos o negativos permiten al agente establecer respectivamente, diferentes niveles de preferencias o de rechazo. Las graduaciones en las intenciones también dan una medida de preferencia pero en este caso, modelan el costo/beneficio que le trae al agente alcanzar una meta. Luego, a partir de la representación e interacción de estas actitudes graduadas, pueden ser modelados agentes que muestren diferentes tipos de comportamiento. La formalización del modelo g-BDI está basada en los sistemas multi-contextos. Diferentes lógicas modales multivaluadas se han propuesto para representar y razonar sobre las creencias, deseos e intenciones, presentando en cada caso una axiomática completa y consistente. Para tratar con la semántica operacional del modelo de agente, primero se definió un calculus para la ejecución de sistemas multi-contextos, denominado Multi-context calculus. Luego, mediante este calculus se le ha dado al modelo g-BDI semántica computacional. Por otra parte, se ha presentado una metodología para la ingeniería de agentes g-BDI en un escenario multiagente. El objeto de esta propuesta es guiar el diseño de sistemas multiagentes, a partir de un problema del mundo real. Por medio del desarrollo de un sistema recomendador en turismo como caso de estudio, donde el agente recomendador tiene una arquitectura g-BDI, se ha mostrado que este modelo es valioso para diseñar e implementar agentes concretos. Finalmente, usando este caso de estudio se ha realizado una experimentación sobre la flexibilidad y performance del modelo de agente g-BDI, demostrando que es útil para desarrollar agentes que manifiesten conductas diversas. También se ha mostrado que los resultados obtenidos con estos agentes recomendadores modelizados con actitudes graduadas, son mejores que aquellos alcanzados por los agentes con actitudes no-graduadas.