144 resultados para preservatives
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Living organisms are constantly subjected to the action of free radicals, which are one of the causes of oxidation reactions, because they have on free electron, what makes it very reactive. They are products of organism reactions or they are produced by exogenous factors, such as tobacco. Fatty acids are the most vulnerable target, and may suffer lipid peroxidation, what affects the cell structure. Cardiovascular diseases, cancer and diseases of aging are occurrence of these reactions in the organism related. The aliments are also subjected to suffer oxidation reactions, what make them unfit for consumption and decreasing the useful life. Synthetics antioxidants are used as aliments preservatives, but they present some toxicity for the organism. Studies for the utilization of natural antioxidants have gained more importance in recent decades, due to the conservation potential and low toxicity. Phenolics compounds are largely present at the vegetable kingdom and they present high antioxidant potential due to the neutralization and kidnapping of free radicals capacity. These compounds are used by the industry at the aliments conservation, specially the phenolics acids. The consumption of aliments rich in phenolic compounds, such as teas, wines and fruits are low incidence of degenerative diseases related. This study consists in a bibliographic revision that covers these compounds importance in diet and at the food conservation, and the methodologies and difficulties in the extraction process due to variety of molecules of this group.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Essential oils (EOs) are technological options that may be employed in natural foods due to their antimicrobial activities. However, restrictions exist when high EOs concentrations are required which, in their turn, affect sensory qualities. Technological alternatives, such as combination of EOs with chelating and dispersing agents, have been proposed in the literature. Current research determined the antimicrobial activity of cinnamon EO against microbial spoilage in yogurt when added at the highest acceptable sensory EO concentration, alone or associated with ethylenediaminetetraacetic acid (EDTA) and/or polyethylene glycol. Cinnamon EO's chemical analysis was performed by gas chromatography-mass spectrometry (GC-MS). Sensory analysis was conducted to define the highest acceptable sensory concentration of cinnamon EO in yogurt, stipulated at 0.04% cinnamon EO. Antimicrobial activity in yogurt was then evaluated for aerobic mesophiles, psychrotrophilic microorganisms, yeasts and molds counts. Treatments comprised (1) control, (2) 0.04% EO, (3) 0.04% EO + 0.01% EDTA, (4) 0.04% EO + 0.02% polyethylene glycol; (5) 0.04% EO + 0.01% EDTA + 0.2% polyethylene glycol, in triplicates. Concentration 0.04% of cinnamon EO, alone or associated with EDTA and/or polyethylene glycol, failed to show any antimicrobial activity against aerobic mesophiles, yeasts and molds.
Resumo:
Culinary herbs and spices have long been considered essentially as flavor enhancers or preservatives, with little attention given to their potential health-promoting properties. Nevertheless, recent research has shown them to be significant dietary sources of bioactive phenolic compounds. Despite noteworthy efforts performed in recent years to improve our knowledge of their chemical composition, a detailed phenolic profile of these plant-based products is still lacking. In the present work, antioxidant activities and phenolic composition of five herbs and spices, namely caraway, turmeric, dill, marjoram and nutmeg, have been studied. The use of liquid chromatography coupled to LTQ-Orbitrap mass spectrometry enabled the identification of up to 42 phenolic compounds. To the best of our knowledge, two of them, apigenin-C-hexoside-C-pentoside and apigenin-C-hexoside-C-hexoside have not been previously reported in turmeric. Qualitative and quantitative differences were observed in polyphenol profiles, with the highest phenolic content found in caraway. Multivariate statistical treatment of the results allowed the detection of distinctive features among the studied herbs and spices.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Pós-graduação em Agronomia (Produção Vegetal) - FCAV
Resumo:
In Brazil, the exploration and use of the Hevea brasiliensis Mull Arg. wood at the end of the latex production cycle from 30 to 35 years, is practically unknown. However, one of the most significant problems with its use relates to the high susceptibility of this species wood to the fungus Botryodiplodia theobromae attack, especially during the primary wood processing phase. The present study evaluated the efficacy of four chemicals to control juvenile and adult Hevea brasiliensis wood from the attack of the fungus stainer Botryodiplodia theobromae following the ASTM 4445 (2003) standard. The results showed that the active ingredients separately tested and evaluated in the laboratory; (Quinolinolato Copper - 8 and Carbendazim (T1); Tribromofenol 2-4-6 (T2); Extract-Based Vegetable Tannin (T3); Carbendazim and Prochloraz (T4)) do not totally prevent the contamination of Botryodiplodia theobromae in 5% level of significance
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fewer and fewer Americans produce their own food, yet consumers demand and enjoy a food supply that is flavorful, nutritious, convenient, readily available, safe, abundant, varied, and reasonably priced. Food additives and technology make that possible. This research publication covers what food additive are, why are they used, how they are regulated, and what can individuals do when they are concerned about food additives. It also contains a guide to food additives table.
Resumo:
Goat breeding in Sardinia constitutes an important source of income for farming and shepherding activities. In this study 170 LAB strains were isolated from Sardinian goat's milk and tested for bacteriocins production against several food-borne pathogenic microorganisms. Four isolates (SD1, SD2, SD3 and SD4) were selected for their effective inhibition on Listeria monocytogenes. The strains were classified as members of Enterococcus genus, according to their biochemical and physiological characteristics, and then genetically identified as Enterococcus faecium. In MRS broth at 37 degrees C, bacteriocins SD1 and SD2 were produced at much higher levels (51200 AU/ml) compared to bacteriocin SD3 (3200 AU/ml) and bacteriocin SD4 (800 AU/ml). Their peptides were inactivated by proteolytic enzymes, but not when treated with alpha-amylase, catalase and lipase. The four bacteriocins remained stable at pH from 2.0 to 12.0, after exposure to 100 degrees C for 120 min and were not affected by the presence of surfactants and salts (N-Laourylsarcosine, NaCl, SDS, Triton X-100, Tween 20, Tween 80 and urea). Their molecular size was determined to be approximately 5 kDa by tricine-SDS-PAGE. Since the strains exhibited a strong antimicrobial activity against 21 L monocytogenes strains and 6 Salmonella spp. isolates, they should be considered as potential bio-preservatives cultures for fermented food productions. Moreover, due to their technological features, the four strains could be taken in account for using as adjunct NSLAB (non-starter lactic acid bacteria) rather than as starter culture. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
Nisin is a promising alternative to chemical preservatives for use as a natural biopreservative in foods. This bacteriocin has also potential biomedical applications. Lactic acid bacteria are commonly cultivated in expensive standard complex media. We have evaluated the cell growth and nisin production of Lactococcus lactis in a low-cost natural medium consisting of diluted skimmed milk in a 2-L bioreactor. The assays were performed at 30 degrees C for 56 h, at varying agitation speeds and airflow rates: (1) 200 rpm (no airflow, and airflow at 0.5, 1.0 and 2.0 L/min); (2) 100 rpm (no airflow, and airflow at 0.5 L/min). Nisin activity was evaluated using agar diffusion assays. The highest nisin concentration, 49.88 mg/L (3.3 log AU/mL or 1,995.29 AU/mL), was obtained at 16 h of culture, 200 rpm and no airflow (k(L)a = 5.29 x 10(-3)). These results show that a cultivation medium composed of diluted skimmed milk supports cell growth to facilitate nisin biosynthesis.
Resumo:
Parabens are antimicrobial preservatives widely used in pharmaceutical, cosmetic and food industries. The alkyl chain connected to the ester group defines some important physicochemical characteristics of these compounds, including the partition coefficient and redox properties. The voltammetric and computational analyses were carried out in order to evaluate the redox behavior of these compounds and other phenolic analogues. A strong correlation between chemical substituents inductive effects of parabens with redox potentials was observed. Using cyclic voltammetry and glassy carbon working electrode, only one irreversible anodic peak was observed around 0.8 V for methylparaben (MP), ethylparaben (EP), propylparaben (PP), butylparaben (BP), benzylparaben (BzP) and p-substituted phenolic analogues. The electrodonating inductive effect of alkyl groups was demonstrated by the anodic oxidation potential shift to lower values as the carbon number increases and, therefore the parabens (and other phenolic analogues) oxidation processes to the quinonoidic forms showed great dependence on the substituent pattern.