852 resultados para prefrontal cortex


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Suicide is a serious public health issue that results from an interaction between multiple risk factors including individual vulnerabilities to complex feelings of hopelessness, fear, and stress. Although kinase genes have been implicated in fear and stress, including the consolidation and extinction of fearful memories, expression profiles of those genes in the brain of suicide victims are less clear. Using gene expression microarray data from the Online Stanley Genomics Database 1 and a quantitative PCR, we investigated the expression profiles of multiple kinase genes including the calcium calmodulin-dependent kinase (CAMK), the cyclin-dependent kinase, the mitogen-activated protein kinase (MAPK), and the protein kinase C (PKC) in the prefrontal cortex (PFC) of mood disorder patients died with suicide (N = 45) and without suicide (N = 38). We also investigated the expression pattern of the same genes in the PFC of developing humans ranging in age from birth to 49 year (N = 46). The expression levels of CAMK2B, CDK5, MAPK9, and PRKCI were increased in the PFC of suicide victims as compared to non-suicide controls (false discovery rate, FDR-adjusted p < 0.05, fold change >1.1). Those genes also showed changes in expression pattern during the postnatal development (FDR-adjusted p < 0.05). These results suggest that multiple kinase genes undergo age-dependent changes in normal brains as well as pathological changes in suicide brains. These findings may provide an important link to protein kinases known to be important for the development of fear memory, stress associated neural plasticity, and up-regulation in the PFC of suicide victims. More research is needed to better understand the functional role of these kinase genes that may be associated with the pathophysiology of suicide

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Chronic difficulties arising from mild brain injury (TBI) are difficult to predict because the processes underlying changes after TBI are poorly understood. In mild brain injury the extent of neuropsychiatric and cognitive symptoms correspond poorly to overt tissue loss (Barth 1983; Liu 2010). Cellular, immune and hormonal cascades occurring after injury and continuing during the healing process may impact uninjured brain regions sensitive to the effects of physiological and emotional stress, which receive projections from the injury site. Changes in these most basic properties due to injury or disease have profound implications for virtually every aspect of brain function through disruption of neurotransmitter, neuroendocrine and metabolic systems. In order to screen for changes in transmitter and metabolic activity, in this study we developed Single voxel proton Magnetic Resonance Spectroscopy (1H-MRS) for use in both injured and control animals. We first evaluated if 1H-MRS could be used to evaluate in vivo, alterations in brain metabolism and catabolism of the prefrontal cortex, amygdala and ventral hippocampus in both control and injured animals after controlled cortical impact injury to the rat prefrontal cortex. We found that metabolite measurements for Myo-Inositol, Choline, creatine, Glutamate+Glutamine, and N-acetyl-acetate are attainable in deep brain structures in vivo in injured and controls rats. We next seek to evaluate longitudinally, in vivo, alterations in brain metabolism and catabolism of the prefrontal cortex, amygdala and ventral hippocampus during the first month after controlled cortical impact injury to the rat prefrontal cortex. These ongoing studies will provide data on the changes in transmitters and metabolites over time in injured and non-injured subjects. These studies address some of the fundamental questions about how mild brain injury has such diverse effects on overall brain health and function.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The prefrontal cortex (PFC), located in the anterior region of the frontal lobe, is considered to have several key roles in higher cognitive and executive functions. In general, the PFC can be seen as a coordinator of thought and action allowing subjects to behave in a goal-directed manner. Due to its anatomical connections with a variety of cortical and subcortical structures, several neurotransmitters, including dopamine, are involved in the regulation of PFC activity. In general, the majority of released dopamine is cleared by the dopamine transporter (DAT). In the PFC however, the number of presynaptic DAT is diminished, emphasizing the relative importance of catechol-O-methyltransferase (COMT) in dopamine metabolism. As a result, the role of COMT in the etiology of psychotic disorders is under constant debate. The present study investigated the role of COMT in prefrontal cortical dopamine metabolism by different neurochemical methods in COMT knockout (COMT-KO) mice. Pharmacological tools to inhibit other dopamine clearing mechanisms were also used for a more comprehensive and collective picture. In addition, this study investigated how a lack of the soluble (S-) COMT isoform affects the total COMT activity as well as the pharmacokinetics of orally administered L-dopa using mutant mice expressing only the membrane-bound (MB-) COMT isoform. Also the role of COMT in striatal and accumbal dopamine turnover during Δ9-tetrahydrocannabinol (THC) challenge was studied. We found markedly increased basal dopamine concentrations in the PFC, but not the striatum or nucleus accumbens (NAcc), of mice lacking COMT. Pharmacological inhibition of the noradrenaline transporter (NET) and monoamine oxidase (MAO) elevated prefrontal cortical dopamine levels several-fold, whereas inhibition of DAT did not. The lack of COMT doubled the dopamine raising effects of NET and MAO inhibition. No compensatory expression of either DAT or NET was found in the COMT-KO mice. The lack of S-COMT decreased the total COMT activity by 50-70 % and modified dopamine transmission and the pharmacokinetics of exogenous Ldopa in a sex and tissue specific manner. Finally, we found that subsequent tolcapone and THC increased dopamine levels in the NAcc, but not in the striatum. Conclusively, this study presents neurochemical evidence for the important role of COMT in the PFC and shows that COMT is responsible for about half of prefrontal cortical dopamine metabolism. This study also highlights the previously underestimated proportional role of MB-COMT and supports the clinical evidence of a gene x environment interaction between COMT and cannabis.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Cerebral prefrontal function is one of the important aspects in neurobiology. Based on the experimental results of neuroanatomy, neurophysiology, behavioral sciences, and the principles of cybernetics and information theory after constructed a simple model simulating prefrontal control function, this paper simulated the behavior of Macaca mulatta completing delayed tasks both before and after its cerebral prefrontal cortex being damaged. The results indicated that there is an obvious difference in the capacity of completing delayed response tasks for the normal monkeys and those of prefrontal cortex cut away. The results are agreement with experiments. The authors suggest that the factors of affecting complete delayed response tasks might be in information keeping and extracting of memory including information storing, keeping and extracting procedures rather than in information storing process.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This research is focused on the contribution of area 7 to the short-term visual spatial memory. Three rhesus monkeys (Macaca mulatta) were trained in the direct delayed response task in which 5 delay intervals were used in each session. When each monkey reached the criterion of 90% correct responses in 5 successive sessions, two monkeys underwent a surgery while the other one received a sham operation as a control. In the first stage of the surgery, bilateral areas 7a, 7b and 7ip of the parietal cortex of two monkeys were precisely lesioned. After 7 days of recuperation, the monkeys were required to do the same task. The average percentage of correct responses in the lesioned animals decreased from 94.7% to 89.3% and 93.3% to 82.0% respectively (no significance, P > 0.05, n = 2). In addition, the monkeys' complex movements were mildly impaired. The lesioned monkeys were found to have difficulty picking up food from the wells. In the second stage, bilateral area 7m was lesioned. In the 5 postoperative sessions, the average percentage of correct responses in one monkey, with a relatively precise 7m lesion, decreased from 94.7% to 92.2% (no significance, P > 0.05), while the other monkey, with widely spread necrosis of lateral parietal cortex, showed an. obvious decline in performance, but still over the chance level. After 240 trials this monkey reattained the normal criterion. The results of this research suggest that the lesions of area 7 of the parietal cortex did not significantly affect the short-term visual spatial memory, which has been shown to be sensitive to lesions of the prefrontal cortex; they also support the notion of dissociation of spatial functions in the prefrontal and parietal cortices.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

There is a unidirectional, ipsilateral and monosynaptic projection from the hippocampus to the prefrontal cortex. The cognitive function of hippocampal-prefrontal cortical circuit is not well established. In this paper, we use muscimol treated rats to inv

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Humans, like other animals, alter their behavior depending on whether a threat is close or distant. We investigated spatial imminence of threat by developing an active avoidance paradigm in which volunteers were pursued through a maze by a virtual predator endowed with an ability to chase, capture, and inflict pain. Using functional magnetic resonance imaging, we found that as the virtual predator grew closer, brain activity shifted from the ventromedial prefrontal cortex to the periaqueductal gray. This shift showed maximal expression when a high degree of pain was anticipated. Moreover, imminence-driven periaqueductal gray activity correlated with increased subjective degree of dread and decreased confidence of escape. Our findings cast light on the neural dynamics of threat anticipation and have implications for the neurobiology of human anxiety-related disorders.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In fear extinction, an animal learns that a conditioned stimulus (CS) no longer predicts a noxious stimulus [unconditioned stimulus (UCS)] to which it had previously been associated, leading to inhibition of the conditioned response (CR). Extinction creates a new CS-noUCS memory trace, competing with the initial fear (CS-UCS) memory. Recall of extinction memory and, hence, CR inhibition at later CS encounters is facilitated by contextual stimuli present during extinction training. In line with theoretical predictions derived from animal studies, we show that, after extinction, a CS-evoked engagement of human ventromedial prefrontal cortex (VMPFC) and hippocampus is context dependent, being expressed in an extinction, but not a conditioning, context. Likewise, a positive correlation between VMPFC and hippocampal activity is extinction context dependent. Thus, a VMPFC-hippocampal network provides for context-dependent recall of human extinction memory, consistent with a view that hippocampus confers context dependence on VMPFC.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

How do the layered circuits of prefrontal and motor cortex carry out working memory storage, sequence learning, and voluntary sequential item selection and performance? A neural model called LIST PARSE is presented to explain and quantitatively simulate cognitive data about both immediate serial recall and free recall, including bowing of the serial position performance curves, error-type distributions, temporal limitations upon recall, and list length effects. The model also qualitatively explains cognitive effects related to attentional modulation, temporal grouping, variable presentation rates, phonemic similarity, presentation of non-words, word frequency/item familiarity and list strength, distracters and modality effects. In addition, the model quantitatively simulates neurophysiological data from the macaque prefrontal cortex obtained during sequential sensory-motor imitation and planned performance. The article further develops a theory concerning how the cerebral cortex works by showing how variations of the laminar circuits that have previously clarified how the visual cortex sees can also support cognitive processing of sequentially organized behaviors.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

OBJECTIVE: In this prospective, longitudinal study of young children, we examined whether a history of preschool generalized anxiety, separation anxiety, and/or social phobia is associated with amygdala-prefrontal dysregulation at school-age. As an exploratory analysis, we investigated whether distinct anxiety disorders differ in the patterns of this amygdala-prefrontal dysregulation. METHODS: Participants were children taking part in a 5-year study of early childhood brain development and anxiety disorders. Preschool symptoms of generalized anxiety, separation anxiety, and social phobia were assessed with the Preschool Age Psychiatric Assessment (PAPA) in the first wave of the study when the children were between 2 and 5 years old. The PAPA was repeated at age 6. We conducted functional MRIs when the children were 5.5 to 9.5 year old to assess neural responses to viewing of angry and fearful faces. RESULTS: A history of preschool social phobia predicted less school-age functional connectivity between the amygdala and the ventral prefrontal cortices to angry faces. Preschool generalized anxiety predicted less functional connectivity between the amygdala and dorsal prefrontal cortices in response to fearful faces. Finally, a history of preschool separation anxiety predicted less school-age functional connectivity between the amygdala and the ventral prefrontal cortices to angry faces and greater school-age functional connectivity between the amygdala and dorsal prefrontal cortices to angry faces. CONCLUSIONS: Our results suggest that there are enduring neurobiological effects associated with a history of preschool anxiety, which occur over-and-above the effect of subsequent emotional symptoms. Our results also provide preliminary evidence for the neurobiological differentiation of specific preschool anxiety disorders.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Humans are metacognitive: they monitor and control their cognition. Our hypothesis was that neuronal correlates of metacognition reside in the same brain areas responsible for cognition, including frontal cortex. Recent work demonstrated that nonhuman primates are capable of metacognition, so we recorded from single neurons in the frontal eye field, dorsolateral prefrontal cortex, and supplementary eye field of monkeys (Macaca mulatta) that performed a metacognitive visual-oculomotor task. The animals made a decision and reported it with a saccade, but received no immediate reward or feedback. Instead, they had to monitor their decision and bet whether it was correct. Activity was correlated with decisions and bets in all three brain areas, but putative metacognitive activity that linked decisions to appropriate bets occurred exclusively in the SEF. Our results offer a survey of neuronal correlates of metacognition and implicate the SEF in linking cognitive functions over short periods of time.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Objectives: To investigate the role of the prefrontal cortex in attention-based modulation of cortical somatosensory processing.

Methods: Six prefrontal stroke patients were compared with eleven neurologically intact older adults during a vibrotactile discrimination task. All subjects attended to stimuli on one digit while ignoring distracter stimuli on a separate digit of the same hand. Subjects were required to report infrequent targets on the attended digit only. Throughout testing electroencephalography was used to measure event-related potentials for both task-relevant and irrelevant stimuli.

Results: Prefrontal patients demonstrated significant changes in cortical somatosensory processing based on attention compared to age-matched controls. This was evident both in early unimodal somatosensory processing (i.e. P100) and in later cortical processing stages (i.e. long-latency positivity). Moreover, there was a tendency towards a tonic loss of inhibition over early somatosensory cortical processing (i.e. P50).

Conclusions: The attention-based modulation noted for neurologically intact older adults was absent in prefrontal lesion patients.

Significance: The present study highlights the important role of prefrontal regions in sustaining inhibition over early sensory cortical processing stages and in modifying somatosensory transmission based on task-relevance. Notably these deficits extend beyond those previously shown to occur as a function of age.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Le traitement visuel répété d’un visage inconnu entraîne une suppression de l’activité neuronale dans les régions préférentielles aux visages du cortex occipito-temporal. Cette «suppression neuronale» (SN) est un mécanisme primitif hautement impliqué dans l’apprentissage de visages, pouvant être détecté par une réduction de l’amplitude de la composante N170, un potentiel relié à l’événement (PRE), au-dessus du cortex occipito-temporal. Le cortex préfrontal dorsolatéral (CPDL) influence le traitement et l’encodage visuel, mais sa contribution à la SN de la N170 demeure inconnue. Nous avons utilisé la stimulation électrique transcrânienne à courant direct (SETCD) pour moduler l’excitabilité corticale du CPDL de 14 adultes sains lors de l’apprentissage de visages inconnus. Trois conditions de stimulation étaient utilisées: inhibition à droite, excitation à droite et placebo. Pendant l’apprentissage, l’EEG était enregistré afin d’évaluer la SN de la P100, la N170 et la P300. Trois jours suivant l’apprentissage, une tâche de reconnaissance était administrée où les performances en pourcentage de bonnes réponses et temps de réaction (TR) étaient enregistrées. Les résultats indiquent que la condition d’excitation à droite a facilité la SN de la N170 et a augmentée l’amplitude de la P300, entraînant une reconnaissance des visages plus rapide à long-terme. À l’inverse, la condition d’inhibition à droite a causé une augmentation de l’amplitude de la N170 et des TR plus lents, sans affecter la P300. Ces résultats sont les premiers à démontrer que la modulation d’excitabilité du CPDL puisse influencer l’encodage visuel de visages inconnus, soulignant l’importance du CPDL dans les mécanismes d’apprentissage de base.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Une variété de modèles sur le processus de prise de décision dans divers contextes présume que les sujets accumulent les évidences sensorielles, échantillonnent et intègrent constamment les signaux pour et contre des hypothèses alternatives. L'intégration continue jusqu'à ce que les évidences en faveur de l'une des hypothèses dépassent un seuil de critère de décision (niveau de preuve exigé pour prendre une décision). De nouveaux modèles suggèrent que ce processus de décision est plutôt dynamique; les différents paramètres peuvent varier entre les essais et même pendant l’essai plutôt que d’être un processus statique avec des paramètres qui ne changent qu’entre les blocs d’essais. Ce projet de doctorat a pour but de démontrer que les décisions concernant les mouvements d’atteinte impliquent un mécanisme d’accumulation temporelle des informations sensorielles menant à un seuil de décision. Pour ce faire, nous avons élaboré un paradigme de prise de décision basée sur un stimulus ambigu afin de voir si les neurones du cortex moteur primaire (M1), prémoteur dorsal (PMd) et préfrontal (DLPFc) démontrent des corrélats neuronaux de ce processus d’accumulation temporelle. Nous avons tout d’abord testé différentes versions de la tâche avec l’aide de sujets humains afin de développer une tâche où l’on observe le comportement idéal des sujets pour nous permettre de vérifier l’hypothèse de travail. Les données comportementales chez l’humain et les singes des temps de réaction et du pourcentage d'erreurs montrent une augmentation systématique avec l'augmentation de l'ambigüité du stimulus. Ces résultats sont cohérents avec les prédictions des modèles de diffusion, tel que confirmé par une modélisation computationnelle des données. Nous avons, par la suite, enregistré des cellules dans M1, PMd et DLPFc de 2 singes pendant qu'ils s'exécutaient à la tâche. Les neurones de M1 ne semblent pas être influencés par l'ambiguïté des stimuli mais déchargent plutôt en corrélation avec le mouvement exécuté. Les neurones du PMd codent la direction du mouvement choisi par les singes, assez rapidement après la présentation du stimulus. De plus, l’activation de plusieurs cellules du PMd est plus lente lorsque l'ambiguïté du stimulus augmente et prend plus de temps à signaler la direction de mouvement. L’activité des neurones du PMd reflète le choix de l’animal, peu importe si c’est une bonne réponse ou une erreur. Ceci supporte un rôle du PMd dans la prise de décision concernant les mouvements d’atteinte. Finalement, nous avons débuté des enregistrements dans le cortex préfrontal et les résultats présentés sont préliminaires. Les neurones du DLPFc semblent beaucoup plus influencés par les combinaisons des facteurs de couleur et de position spatiale que les neurones du PMd. Notre conclusion est que le cortex PMd est impliqué dans l'évaluation des évidences pour ou contre la position spatiale de différentes cibles potentielles mais assez indépendamment de la couleur de celles-ci. Le cortex DLPFc serait plutôt responsable du traitement des informations pour la combinaison de la couleur et de la position des cibles spatiales et du stimulus ambigu nécessaire pour faire le lien entre le stimulus ambigu et la cible correspondante.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Although depressed mood is a normal occurrence in response to adversity in all individuals, what distinguishes those who are vulnerable to major depressive disorder (MDD) is their inability to effectively regulate negative mood when it arises. Investigating the neural underpinnings of adaptive emotion regulation and the extent to which such processes are compromised in MDD may be helpful in understanding the pathophysiology of depression. We report results from a functional magnetic resonance imaging study demonstrating left-lateralized activation in the prefrontal cortex (PFC) when downregulating negative affect in nondepressed individuals, whereas depressed individuals showed bilateral PFC activation. Furthermore, during an effortful affective reappraisal task, nondepressed individuals showed an inverse relationship between activation in left ventrolateral PFC and the amygdala that is mediated by the ventromedial PFC (VMPFC). No such relationship was found for depressed individuals, who instead show a positive association between VMPFC and amygdala. Pupil dilation data suggest that those depressed patients who expend more effort to reappraise negative stimuli are characterized by accentuated activation in the amygdala, insula, and thalamus, whereas nondepressed individuals exhibit the opposite pattern. These findings indicate that a key feature underlying the pathophysiology of major depression is the counterproductive engagement of right prefrontal cortex and the lack of engagement of left lateral-ventromedial prefrontal circuitry important for the downregulation of amygdala responses to negative stimuli.