895 resultados para power system analysis
Resumo:
"SRI Project no. IU-3084."
Resumo:
The purpose of this study is to create a petroleum system model and to assess whether or not the La Luna Formation has potential for unconventional exploration and production in the Middle Magdalena Valley Basin (MMVB), Colombia. Today, the Magdalena River valley is an intermontane valley located between the Central and Eastern Cordillera of Colombia. The underlying basin, however, represents a major regional sedimentary basin that received deposits from the Triassic through the Cenozoic. In recent years Colombia has been of great exploration interest because of its potentially vast hydrocarbon resources, existing petroleum infrastructure, and skilled workforce. Since the early 1900s when the MMVB began producing, it has led to discoveries of 1.9 billion barrels of oil (BBO) and 2.5 trillion cubic feet (Tcf) of gas (Willatt et al., 2012). Colombia is already the third largest producer of oil in South America, and there is good potential for additional unconventional exploration and production in the Cretaceous source rocks (Willatt et al., 2012). Garcia Gonzalez et al. (2009) estimate the potential remaining hydrocarbons in the La Luna Formation in the MMVB to be between 1.15 and 10.33 billion barrels of oil equivalent (BBOE; P90 and P10 respectively), with 2.02 BBOE cumulative production to date. Throughout the 1900s and early 2000s, Cenozoic continental and transitional clastic reservoirs were the primary exploration interest in the MMVB (Dickey, 1992). The Cretaceous source rocks, such as the La Luna Formation, are now the target for unconventional exploration and production. In the MMVB, the La Luna formation is characterized by relatively high total organic carbon (TOC) values, moderate maturity, and adequate thickness and depth (Veigal and Dzelalijal, 2014). The La Luna Formation is composed of Cenomanian-Santonian aged shales, marls, and limestones (Veigal and Dzelalijal, 2014). In addition to the in-situ hydrocarbons, the fractured limestones in the La Luna formation act as secondary reservoirs for light oil from other formations (Veigal and Dzelalijal, 2014). Thus the system can be considered more of a hybrid play, rather than a pure unconventional play. The Cretaceous source rocks of the MMVB exhibit excellent potential for unconventional exploration and production. Due to the complex structural nature of the MMVB, an understanding of the distribution of rocks and variations in rock qualities is essential for reducing risk in this play.
Resumo:
We present the design rationale and basic workings of a low-cost, easy-to-use power system simulator developed to support investigations into human interface design for a hydropower plant. The power system simulator is based on three important components: models of power system components, a data repository, and human interface elements. Dynamic Data Exchange (DDE) allows simulator components to communicate with each other within the simulator. To construct the modules of the simulator we have combined the advantages of commercial software such as Matlab/Simulink, ActiveX Control, Visual Basic and Excel and integrated them in the simulator. An important advantage of our approach is that further components of the simulator now can be developed independently. An initial assessment of the simulator indicates it is fit for intended purpose.
Resumo:
A new control algorithm using parallel braking resistor (BR) and serial fault current limiter (FCL) for power system transient stability enhancement is presented in this paper. The proposed control algorithm can prevent transient instability during first swing by immediately taking away the transient energy gained in faulted period. It can also reduce generator oscillation time and efficiently make system back to the post-fault equilibrium. The algorithm is based on a new system energy function based method to choose optimal switching point. The parallel BR and serial FCL resistor can be switched at the calculated optimal point to get the best control result. This method allows optimum dissipation of the transient energy caused by disturbance so to make system back to equilibrium in minimum time. Case studies are given to verify the efficiency and effectiveness of this new control algorithm.
Resumo:
A deregulated electricity market is characterized with uncertainties, with both long and short terms. As one of the major long term planning issues, the transmission expansion planning (TEP) is aiming at implementing reliable and secure network support to the market participants. The TEP covers two major issues: technical assessment and financial evaluations. Traditionally, the net present value (NPV) method is the most accepted for financial evaluations, it is simple to conduct and easy to understand. Nevertheless, TEP in a deregulated market needs a more dynamic approach to incorporate a project's management flexibility, or the managerial ability to adapt in response to unpredictable market developments. The real options approach (ROA) is introduced here, which has clear advantage on counting the future course of actions that investors may take, with understandable results in monetary terms. In the case study, a Nordic test system has been testified and several scenarios are given for network expansion planning. Both the technical assessment and financial evaluation have been conducted in the case study.
Resumo:
Grid computing is an advanced technique for collaboratively solving complicated scientific problems using geographically and organisational dispersed computational, data storage and other recourses. Application of grid computing could provide significant benefits to all aspects of power system that involves using computers. Based on our previous research, this paper presents a novel grid computing approach for probabilistic small signal stability (PSSS) analysis in electric power systems with uncertainties. A prototype computing grid is successfully implemented in our research lab to carry out PSSS analysis on two benchmark systems. Comparing to traditional computing techniques, the gird computing has given better performances for PSSS analysis in terms of computing capacity, speed, accuracy and stability. In addition, a computing grid framework for power system analysis has been proposed based on the recent study.
Resumo:
Cascaded multilevel inverters-based Static Var Generators (SVGs) are FACTS equipment introduced for active and reactive power flow control. They eliminate the need for zigzag transformers and give a fast response. However, with regard to their application for flicker reduction in using Electric Arc Furnace (EAF), the existing multilevel inverter-based SVGs suffer from the following disadvantages. (1) To control the reactive power, an off-line calculation of Modulation Index (MI) is required to adjust the SVG output voltage. This slows down the transient response to the changes of reactive power; and (2) Random active power exchange may cause unbalance to the voltage of the d.c. link (HBI) capacitor when the reactive power control is done by adjusting the power angle d alone. To resolve these problems, a mathematical model of 11-level cascaded SVG, was developed. A new control strategy involving both MI (modulation index) and power angle (d) is proposed. A selected harmonics elimination method (SHEM) is taken for switching pattern calculations. To shorten the response time and simplify the controls system, feed forward neural networks are used for on-line computation of the switching patterns instead of using look-up tables. The proposed controller updates the MI and switching patterns once each line-cycle according to the sampled reactive power Qs. Meanwhile, the remainder reactive power (compensated by the MI) and the reactive power variations during the line-cycle will be continuously compensated by adjusting the power angles, d. The scheme senses both variables MI and d, and takes action through the inverter switching angle, qi. As a result, the proposed SVG is expected to give a faster and more accurate response than present designs allow. In support of the proposal there is a mathematical model for reactive powered distribution and a sensitivity matrix for voltage regulation assessment, MATLAB simulation results are provided to validate the proposed schemes. The performance with non-linear time varying loads is analysed and refers to a general review of flicker, of methods for measuring flickers due to arc furnace and means for mitigation.
Resumo:
In this thesis various mathematical methods of studying the transient and dynamic stabiIity of practical power systems are presented. Certain long established methods are reviewed and refinements of some proposed. New methods are presented which remove some of the difficulties encountered in applying the powerful stability theories based on the concepts of Liapunov. Chapter 1 is concerned with numerical solution of the transient stability problem. Following a review and comparison of synchronous machine models the superiority of a particular model from the point of view of combined computing time and accuracy is demonstrated. A digital computer program incorporating all the synchronous machine models discussed, and an induction machine model, is described and results of a practical multi-machine transient stability study are presented. Chapter 2 reviews certain concepts and theorems due to Liapunov. In Chapter 3 transient stability regions of single, two and multi~machine systems are investigated through the use of energy type Liapunov functions. The treatment removes several mathematical difficulties encountered in earlier applications of the method. In Chapter 4 a simple criterion for the steady state stability of a multi-machine system is developed and compared with established criteria and a state space approach. In Chapters 5, 6 and 7 dynamic stability and small signal dynamic response are studied through a state space representation of the system. In Chapter 5 the state space equations are derived for single machine systems. An example is provided in which the dynamic stability limit curves are plotted for various synchronous machine representations. In Chapter 6 the state space approach is extended to multi~machine systems. To draw conclusions concerning dynamic stability or dynamic response the system eigenvalues must be properly interpreted, and a discussion concerning correct interpretation is included. Chapter 7 presents a discussion of the optimisation of power system small sjgnal performance through the use of Liapunov functions.
Resumo:
Power system simulation software is a useful tool for teaching the fundamentals of power system design and operation. However, existing commercial packages are not ideal for teaching work-based students because of high-cost, complexity of the software and licensing restrictions. This paper describes a set of power systems libraries that have been developed for use with the free, student-edition of a Micro-Cap Spice that overcomes these problems. In addition, these libraries are easily adapted to include power electronic converter based components into the simulation, such as HVDC, FACTS and smart-grid devices, as well as advanced system control functions. These types of technology are set to become more widespread throughout existing power networks, and their inclusion into a power engineering degree course is therefore becoming increasingly important.
Resumo:
The polyparametric intelligence information system for diagnostics human functional state in medicine and public health is developed. The essence of the system consists in polyparametric describing of human functional state with the unified set of physiological parameters and using the polyparametric cognitive model developed as the tool for a system analysis of multitude data and diagnostics of a human functional state. The model is developed on the basis of general principles geometry and symmetry by algorithms of artificial intelligence systems. The architecture of the system is represented. The model allows analyzing traditional signs - absolute values of electrophysiological parameters and new signs generated by the model – relationships of ones. The classification of physiological multidimensional data is made with a transformer of the model. The results are presented to a physician in a form of visual graph – a pattern individual functional state. This graph allows performing clinical syndrome analysis. A level of human functional state is defined in the case of the developed standard (“ideal”) functional state. The complete formalization of results makes it possible to accumulate physiological data and to analyze them by mathematics methods.
Resumo:
Summarizing the accumulated experience for a long time in the polyparametric cognitive modeling of different physiological processes (electrocardiogram, electroencephalogram, electroreovasogram and others) and the development on this basis some diagnostics methods give ground for formulating a new methodology of the system analysis in biology. The gist of the methodology consists of parametrization of fractals of electrophysiological processes, matrix description of functional state of an object with a unified set of parameters, construction of the polyparametric cognitive geometric model with artificial intelligence algorithms. The geometry model enables to display the parameter relationships are adequate to requirements of the system approach. The objective character of the elements of the models and high degree of formalization which facilitate the use of the mathematical methods are advantages of these models. At the same time the geometric images are easily interpreted in physiological and clinical terms. The polyparametric modeling is an object oriented tool possessed advances functional facilities and some principal features.