933 resultados para power series distribution
Resumo:
The error function is present in several equations describing eletrode processes. But, only approximations of this function are used. In this work, these and other approximations are studied and evaluated according to precision.
Resumo:
Power law scaling is observed in many physical, biological and socio-economical complex systems and is now considered an important property of these systems. In general, power law exists in the central part of the distribution. It has deviations from power law for very small and very large variable sizes. Tsallis, through non-extensive thermodynamics, explained power law distribution in many cases including deviation from the power law. In case of very large steps, the used the heuristic crossover approach. In the present we present an alternative model in which we consider that the entropy factor 9 decreases with variable size due to the softening of long range interactions or memory. We apply this model for distribution of citation index of scientists and examination scores and are able to explain the distribution for entire variable range. In the present model, we can have very sharp cut-off without interfering with power law in its central part as observed in many cases. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Climate change is expected to increase the intensity of extreme precipitation events in Amazonia that in turn might produce more forest blowdowns associated with convective storms. Yet quantitative tree mortality associated with convective storms has never been reported across Amazonia, representing an important additional source of carbon to the atmosphere. Here we demonstrate that a single squall line (aligned cluster of convective storm cells) propagating across Amazonia in January, 2005, caused widespread forest tree mortality and may have contributed to the elevated mortality observed that year. Forest plot data demonstrated that the same year represented the second highest mortality rate over a 15-year annual monitoring interval. Over the Manaus region, disturbed forest patches generated by the squall followed a power-law distribution (scaling exponent alpha = 1.48) and produced a mortality of 0.3-0.5 million trees, equivalent to 30% of the observed annual deforestation reported in 2005 over the same area. Basin-wide, potential tree mortality from this one event was estimated at 542 +/- 121 million trees, equivalent to 23% of the mean annual biomass accumulation estimated for these forests. Our results highlight the vulnerability of Amazon trees to wind-driven mortality associated with convective storms. Storm intensity is expected to increase with a warming climate, which would result in additional tree mortality and carbon release to the atmosphere, with the potential to further warm the climate system. Citation: Negron-Juarez, R. I., J. Q. Chambers, G. Guimaraes, H. Zeng, C. F. M. Raupp, D. M. Marra, G. H. P. M. Ribeiro, S. S. Saatchi, B. W. Nelson, and N. Higuchi (2010), Widespread Amazon forest tree mortality from a single cross-basin squall line event, Geophys. Res. Lett., 37, L16701, doi:10.1029/2010GL043733.
Resumo:
Negative dimensional integration method (NDIM) is a technique to deal with D-dimensional Feynman loop integrals. Since most of the physical quantities in perturbative Quantum Field Theory (pQFT) require the ability of solving them, the quicker and easier the method to evaluate them the better. The NDIM is a novel and promising technique, ipso facto requiring that we put it to test in different contexts and situations and compare the results it yields with those that we already know by other well-established methods. It is in this perspective that we consider here the calculation of an on-shell two-loop three point function in a massless theory. Surprisingly this approach provides twelve non-trivial results in terms of double power series. More astonishing than this is the fact that we can show these twelve solutions to be different representations for the same well-known single result obtained via other methods. It really comes to us as a surprise that the solution for the particular integral we are dealing with is twelvefold degenerate.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Engenharia Elétrica - FEIS
Resumo:
Pós-graduação em Física - IGCE
Resumo:
Pós-graduação em Física - IGCE
Resumo:
Pós-graduação em Matemática em Rede Nacional - IBILCE
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Ciência e Tecnologia de Materiais - FC
Resumo:
Biological processes are complex and possess emergent properties that can not be explained or predict by reductionism methods. To overcome the limitations of reductionism, researchers have been used a group of methods known as systems biology, a new interdisciplinary eld of study aiming to understand the non-linear interactions among components embedded in biological processes. These interactions can be represented by a mathematical object called graph or network, where the elements are represented by nodes and the interactions by edges that link pair of nodes. The networks can be classi- ed according to their topologies: if node degrees follow a Poisson distribution in a given network, i.e. most nodes have approximately the same number of links, this is a random network; if node degrees follow a power-law distribution in a given network, i.e. small number of high-degree nodes and high number of low-degree nodes, this is a scale-free network. Moreover, networks can be classi ed as hierarchical or non-hierarchical. In this study, we analised Escherichia coli and Saccharomyces cerevisiae integrated molecular networks, which have protein-protein interaction, metabolic and transcriptional regulation interactions. By using computational methods, such as MathematicaR , and data collected from public databases, we calculated four topological parameters: the degree distribution P(k), the clustering coe cient C(k), the closeness centrality CC(k) and the betweenness centrality CB(k). P(k) is a function that calculates the total number of nodes with k degree connection and is used to classify the network as random or scale-free. C(k) shows if a network is hierarchical, i.e. if the clusterization coe cient depends on node degree. CC(k) is an indicator of how much a node it is in the lesse way among others some nodes of the network and the CB(k) is a pointer of how a particular node is among several ...(Complete abstract click electronic access below)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Pós-graduação em Física - IFT
Resumo:
The objective of this work is to conduct a comparative study between the fuse key and the single-phase seccionalizador, which are protective equipment used in an electricity distribution networks. This study has also the purpose to reduce the number of electrical power breakdown. Distribution networks are not free from faults, disturbances and failures, then the occurrence of adversities on the network, which may be transient or permanent faults, results in the interruption of electric power. Thus, there are protective systems of distribution networks, which aims to ensure that the electric system continues to function. The incidence of transient faults in the distribution network of this electricity company was used to generate immediate shutdown of customers due to the bad use of fuses as protective equipment by the reclosers. With the use of the fuse switch in the distribution network, there was the immediate shutdown of customers, however, using the single-phase seccionalizador as protective equipment by the reclosers, there are three attempts to restart the electricity power. As the attempts to restart the electricity power are able to eliminate a transient fault, not causing shutdown of any costumer, with the implementation of single-phase sectionalizers to replace the fuses, the number of company shutdowns due to transient faults was reduced by 47.6%