242 resultados para phylum


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The degradation of polychlorinated biphenyls (PCBs) was investigated under fermentativemethanogenic conditions for up to 60 days in the presence of anaerobic biomass from a full-scale UASB reactor. The low methane yields in the PCBs-spiked batch reactors suggested that the biomass had an inhibitory effect on the methanogenic community. Reactors containing PCBs and co-substrates (ethanol/ sodium formate) exhibited substantial PCB reductions from 0.7 to 0.2 mg mL-1 . For the Bacteria domain, the PCBs-spiked reactors were grouped with the PCB-free reactors with a similarity of 55 %, which suggested the selection of a specific population in the presence of PCBs. Three genera of bacteria were found exclusively in the PCB-spiked reactors and were identified using pyrosequencing analysis, Sedimentibacter, Tissierela and Fusibacter. Interestingly, the Sedimentibacter, which was previously correlated with the reductive dechlorination of PCBs, had the highest relative abundance in the RCS-PCB (7.4 %) and RCS-PCB-PF (12.4 %) reactors. Thus, the anaerobic sludge from the UASB reactor contains bacteria from the Firmicutes phylum that are capable of degrading PCBs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pós-graduação em Microbiologia Agropecuária - FCAV

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pós-graduação em Agronomia (Ciência do Solo) - FCAV

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nephrolepis exaltata L. Schott "Bostoniensis" family Davalliaceae and Equisetum giganteum L. family Equisetaceae, Phylum Pteridophyta, exhibit a strong mechanism of dominance in the areas in which they live. Have secondary compounds with allelopathic activity. The objective of this article was evaluate allelopathic potential of two ferns species, using bioassay applying aqueous extracts of dried fronds, in cucumber and lettuce seeds, and observing germination and initial development. To observe the influence on germination was analyze the percentage of germinated seeds and germination speed index (GSI). To observe initial development was analyzed shoot and root growth of the seedlings. The bioassays revealed that no concentration significantly inhibited the germination, but germination speed was delayed gradually in two species tested, as increased the extract concentration. In initial development, all the extracts showed a tendency to inhibit the growth, and an increase in extract concentration decreasing growth of radicle and hypocotyl axis. We conclude that the aqueous extract has inhibitory activity more pronounced in early development than in seed germination, affecting the primary structures of the tested plants, corroborating with the observations of occurrences of the species in natural places where dominate and suppress the growth of other species.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: Imbalance in bacterial species composition of the gut microbiota is one of the factors associated with the cause or complication of the symptoms of Crohn's disease (CD). This disequilibrium consists in the reduction of biodiversity, decrease of genus such as Bifidobacterium and elevation of species such as Escherichia coli. Human microbiota varies among subjects of a same population irrespective of their health condition and among individuals living in distinct geographic locations. In animal models, sex related differences could also be observed in gut bacterial species composition under some pathological conditions. Experiments conducted with mice have demonstrated that the manifestation of type 1 diabetes (T1D) could be under the influence of the animal sex and its serum level of testosterone, which in turn could be modulated by a particular gut microbiota. Considering the existence of similar features between T1D and CD, such as strong genetic component and malfunctioning of the immune system, we investigated whether differences could be observed in the gut microbiota dysbiosis of male and female CD patients. Methods: Fifty and 5 gut mucosal biopsies from 25 adult CD patients (11 males and 14 females) and 43 specimens of an equivalent clinical material from 22 control subjects (11 males and 11 females) were screened for bacterial biodiversity by analyzing sequences of 16SrDNA V6 region. A number of 2-3 samples each from distinct gut segments (from ileum to rectum) were taken from each subject. The 16SrDNA sequences were obtained by sequencing PCR amplicons of the corresponding gene in the Ion torrent PGM sequencer. Identification and classification of the bacterial groups followed the Ribosomal Database Project (RDP) website pipeline. The relationships of the bacterial taxa with each of the study parameters was performed by compiling the data in a MS Excel and the level of statistical significance determined by the Chi-square test. Results: A total of 3203 16SrDNA sequences were detected in the 98 biopsies samples, the majority of which matching Proteobacteria, Firmicutes, Bacterioidetes, and Actinobacteria. The percentage of DNA sequences for each of these phyla found in Male control subjects/Male CD patients was 40.5/33, 32.7/32.4, 20.8/24.5, and 4.4/4,4 for Proteobacteria, Firmicutes, Bacterioidetes, and Actinobacteria, respectively. In Female comparisons, these values were 35.6/42, 39.2/26.3, 19.8/23.3, 5.2/7. Both Male and Female CD patients presented higher numbers of sequences of Actinobacteria and Bacterioidetes than those of control subjects of the same gender. Case-control differences for Firmicutes could be observed only in female comparisons and, for Proteobacteria, although case-control differences were observed in both genders, the nature of difference was distinct, since while in CD female patients a higher number of sequences matching this phylum was detected, in males a reduced number was observed, in comparison with controls. The species responsible for the Proteobacteria variation in both gender was Escherichia coli. Conclusions: The data presented above suggest that any analysis of dysbiosis in CD must take in account the patient's gender, an observation particularly relevant for Escherichia coli, whose association with CD has been most intensively investigated and for which the present study shows a reverse quantitative variation regarding the patients' gender.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Antarctic is a pristine environment that contributes to the maintenance of the global climate equilibrium. The harsh conditions of this habitat are fundamental to selecting those organisms able to survive in such an extreme habitat and able to support the relatively simple ecosystems. The DNA of the microbial community associated with the rhizospheres of Deschampsia antarctica Desv (Poaceae) and Colobanthus quitensis (Kunth) BartI (Caryophyllaceae), the only two native vascular plants that are found in Antarctic ecosystems, was evaluated using a 16S rRNA multiplex 454 pyrosequencing approach. This analysis revealed similar patterns of bacterial diversity between the two plant species from different locations, arguing against the hypothesis that there would be differences between the rhizosphere communities of different plants. Furthermore, the phylum distribution presented a peculiar pattern, with a bacterial community structure different from those reported of many other soils. Firmicutes was the most abundant phylum in almost all the analyzed samples, and there were high levels of anaerobic representatives. Also, some phyla that are dominant in most temperate and tropical soils, such as Acidobacteria, were rarely found in the analyzed samples. Analyzing all the sample libraries together, the predominant genera found were Bifidobacterium (phylum Actinobacteria), Arcobacter (phylum Proteobacteria) and Faecalibacterium (phylum Firmicutes). To the best of our knowledge, this is the first major bacterial sequencing effort of this kind of soil, and it revealed more than expected diversity within these rhizospheres of both maritime Antarctica vascular plants in Admiralty Bay, King George Island, which is part of the South Shetlands archipelago. The ISME Journal (2010) 4, 989-1001; doi:10.1038/ismej.2010.35; published online 1 April 2010

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The use of molecular data for species delimitation in Anthozoa is still a very delicate issue. This is probably due to the low genetic variation found among the molecular markers (primarily mitochondrial) commonly used for Anthozoa. Ceriantharia is an anthozoan group that has not been tested for genetic divergence at the species level. Recently, all three Atlantic species described for the genus Isarachnanthus of Atlantic Ocean, were deemed synonyms based on morphological simmilarities of only one species: Isarachnanthus maderensis. Here, we aimed to verify whether genetic relationships (using COI, 16S, ITS1 and ITS2 molecular markers) confirmed morphological affinities among members of Isarachnanthus from different regions across the Atlantic Ocean. Results from four DNA markers were completely congruent and revealed that two different species exist in the Atlantic Ocean. The low identification success and substantial overlap between intra and interspecific COI distances render the Anthozoa unsuitable for DNA barcoding, which is not true for Ceriantharia. In addition, genetic divergence within and between Ceriantharia species is more similar to that found in Medusozoa (Hydrozoa and Scyphozoa) than Anthozoa and Porifera that have divergence rates similar to typical metazoans. The two genetic species could also be separated based on micromorphological characteristics of their cnidomes. Using a specimen of Isarachnanthus bandanensis from Pacific Ocean as an outgroup, it was possible to estimate the minimum date of divergence between the clades. The cladogenesis event that formed the species of the Atlantic Ocean is estimated to have occured around 8.5 million years ago (Miocene) and several possible speciation scenarios are discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Toxosplasma gondii is the model parasite of the phylum Apicomplexa, which contains numerous obligate intracellular parasites of medical and veterinary importance, including Eimeria, Sarcocystis, Cryptosporidium, Cyclospora, and Plasmodium species. Members of this phylum actively enter host cells by a multistep process with the help of microneme protein (MIC) complexes that play important roles in motility, host cell attachment, moving junction formation, and invasion. T. gondii (Tg)MIC1-4-6 complex is the most extensively investigated microneme complex, which contributes to host cell recognition and attachment via the action of TgMIC1, a sialic acid-binding adhesin. Here, we report the structure of TgMIC4 and reveal its carbohydrate-binding specificity to a variety of galactose-containing carbohydrate ligands. The lectin is composed of six apple domains in which the fifth domain displays a potent galactose-binding activity, and which is cleaved from the complex during parasite invasion. We propose that galactose recognition by TgMIC4 may compromise host protection from galectin-mediated activation of the host immune system.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

It is believed that the exposure of organisms to harsh climate conditions may select for differential enzymatic activities, making the surviving organisms a very promising source for bioprospecting. Soil bacteria play an important role in degradation of organic matter, which is mostly due to their ability to decompose cellulose-based materials. This work focuses on the isolation and identification of cellulolytic bacteria from soil found in two environments with stressful climate conditions (Antarctica and the Brazilian semi-arid caatinga). Cellulolytic bacteria were selected using enrichments at high and low temperatures (4 or 60A degrees C) in liquid media (trypic soy broth-TSB and minimum salt medium-MM) supplemented with cellulose (1%). Many of the isolates (119 out of 254-46.9%) displayed the ability to degrade carboxymethyl-cellulose, indicating the presence of endoglucolytic activity, while only a minority of these isolates (23 out of 254-9.1%) showed exoglucolytic activity (degradation of avicel). The obtained isolates revealed a preferential endoglucolytic activity according to the temperature of enrichments. Also, the identification of some isolates by partial sequencing of the 16S rRNA gene indicated that the Bacteroidetes (e.g., Pedobacter, Chryseobacterium and Flavobacterium) were the main phylum of cellulolytic bacteria isolated from soil in Antarctica; the Firmicutes (e.g., Bacillus) were more commonly isolated from samples from the caatinga; and Actinobacteria were found in both types of soil (e.g., Microbacterium and Arthrobacter). In conclusion, this work reports the isolation of bacteria able to degrade cellulose-based material from soil at very low or very high temperatures, a finding that should be further explored in the search for cellulolytic enzymes to be used in the bioenergy industry.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Abstract Background The metabolic capacity for nitrogen fixation is known to be present in several prokaryotic species scattered across taxonomic groups. Experimental detection of nitrogen fixation in microbes requires species-specific conditions, making it difficult to obtain a comprehensive census of this trait. The recent and rapid increase in the availability of microbial genome sequences affords novel opportunities to re-examine the occurrence and distribution of nitrogen fixation genes. The current practice for computational prediction of nitrogen fixation is to use the presence of the nifH and/or nifD genes. Results Based on a careful comparison of the repertoire of nitrogen fixation genes in known diazotroph species we propose a new criterion for computational prediction of nitrogen fixation: the presence of a minimum set of six genes coding for structural and biosynthetic components, namely NifHDK and NifENB. Using this criterion, we conducted a comprehensive search in fully sequenced genomes and identified 149 diazotrophic species, including 82 known diazotrophs and 67 species not known to fix nitrogen. The taxonomic distribution of nitrogen fixation in Archaea was limited to the Euryarchaeota phylum; within the Bacteria domain we predict that nitrogen fixation occurs in 13 different phyla. Of these, seven phyla had not hitherto been known to contain species capable of nitrogen fixation. Our analyses also identified protein sequences that are similar to nitrogenase in organisms that do not meet the minimum-gene-set criteria. The existence of nitrogenase-like proteins lacking conserved co-factor ligands in both diazotrophs and non-diazotrophs suggests their potential for performing other, as yet unidentified, metabolic functions. Conclusions Our predictions expand the known phylogenetic diversity of nitrogen fixation, and suggest that this trait may be much more common in nature than it is currently thought. The diverse phylogenetic distribution of nitrogenase-like proteins indicates potential new roles for anciently duplicated and divergent members of this group of enzymes.