168 resultados para patella resurfacing
Resumo:
Pós-graduação em Medicina Veterinária - FMVZ
Resumo:
Pós-graduação em Medicina Veterinária - FMVZ
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Legg-Calvé-Perthes disease is a non-inflammatory aseptic necrosis of the head of the femur that is found in both young animals and humans before the gap in the femur head closes. In the fields of both human and veterinary medicine the cause of this condition is not known for certain. Various factors have been put forward in the literature as being responsible for the incidence of this condition such as: abnormalities in coagulation, changes in blood flow in the arteries, a septic obstruction in the draining of the epiphysis or the upper parts of the femur, trauma, growth cycle, hyperactivity in a child, genetic influences and dietary factors. Case histories in dogs show that the first stages of the condition progress slowly but that limping or putting weight on the limb worsens at 6 to 8 weeks. Some owners talk about a sharp onset in clinical lameness. Other clinical symptoms may include irritability, loss of appetite and knawing at the hair surrounding the affected hip. In the course of physical examination manipulating the hip joint will cause pain to the animal. The advanced stages of the disease may result in restricted amplitude of movement, muscular atrophy and fracturing. In humans the clinical signs are similar, although progression of the disease is slower so that it can be diagnosed at an earlier stage. In veterinary medicine the diagnosis is, in the main, based on case history, clinical symptoms, physical examination and certain related procedures such as radiography. The various diagnoses include physical trauma and dislocation of the medial patella. In human medicine many people have been correctly diagnosed. Whatsmore, there is a range of related procedures that are virtually not available to veterinary medicine such as magnetic nuclear resonance, that show up necroses with great clarity before radiography and cintilography do, and is considered... (Complete abstract click electronic access below)
Modelagem em 3D de uma patela humana e análise de esforços utilizando o método dos elementos finitos
Resumo:
Throughout the history of medicine surgeons realized the importance of the patella to the functioning of the knee. The main function of the patella is to increase the mechanical efficiency of the quadriceps tendon and knee extensor mechanism. It was found that 50% to 80% of the fractures without deviation of the patella have the transversal pattern, possibly due to excessive tensile forces applied to the extensor mechanism. The purpose of this study is to analyze the loads to which a patella is submitted during a normal extension movement of knee. This analysis will be done by modeling a 3D patella and subsequent load simulation as, described in medical literature, using the finite element method
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Background: Most of the primary pulmonary tumors in dogs are malignant and from epithelial origin, being bronchioalveolar tumors more prevalent. Adenocarcinoma of clear cells, however, is a very rare pulmonary tumor and its origin is still unknown. It is related to several clinical abnormalities, including hypertrophic osteopathy, an unusual paraneoplastic syndrome characterized by a periosteal reaction along the shaft of long bones. Because of the unusual presentation of the pulmonary adenocarcinoma, the aim of this study was to describe the radiographic, histopathological, and immunohistochemical fi ndings of a dog affl icted with hypertrophic osteopathy secondary to an undifferentiated pulmonary adenocarcinoma of clear cells. Case: A 12-year-old, 45 kg, not castrated male Great Dane dog was presented with painful swelling of all four limbs and moderate respiratory distress. Radiographic examination and computed tomography of the limbs showed palisade-like periosteal bone proliferation involving radius, ulna, femur, patella, tibia, fi bula, tarsus, metacarpal, metatarsal and digits, suggesting hypertrophic osteopathy. Radiographic examination and computed tomography of the lungs also showed a round mass well delimited localized in the right diaphragmatic lobe. A lobectomy of the right diaphragmatic lobe and partial lobectomy of accessory lobe were performed. A poorly differentiated clear squamous cell carcinoma was diagnosed by histological examination. An immune-panel of CK5/CK6, CK7, p63 and TTF-1 was used for immunophenotyping. Immunostaining was weakly positive for CK5/CK6 and negative to all others. Therefore, the diagnosis was poorly differentiated clear cell adenocarcinoma. The dog showed improvement in clinical signs seven days after surgery. One month postoperatively, radiographic examination of the limbs showed less intense periosteal reaction and initiation of bone remodeling. Discussion: Primary pulmonary tumors are considered very infrequent in small animals, but its true incidence rate is dif- fi cult to establish in animal populations. The histological origin of the tumor in the present case, as verifi ed in the literature, is not well established by histological analysis. In these situations, the immunohistochemistry panel may be useful. The modifi cation of the diagnosis between histological analysis and by immunohistochemistry, among other factors, might be due to transdifferentiation from one phenotype to another at various stages in the neoplastic process. The clear cell appearance observed in this case may be verifi ed in all types of carcinoma due to intracellular accumulation of glycogen, most of which is dissolved during the preparation of paraffi n sections. This uncommon neoplasm apparently did not infl uence the radiographic or tomographic fi ndings of the hypertrophic osteopathy in the present case. The frequency of metastases depends on the histological type of the tumor, being common in the pulmonary adenocarcinoma and usually to tracheobronchial lymph nodes and pulmonary parenchyma. Although in this case the imaging studies did not show metastases to other pulmonary lobes, the histological exams showed metastatic lesions that may be associated to the dog’s death after the surgery.
Resumo:
The purpose of this study was to correlate the trochlear shape and patellar tilt angle and lateral patellar displacement at rest and maximal voluntary isometric contraction (MVIC) exercises during open (OKC) and closed kinetic chain (CKC) in subjects with and without anterior knee pain. Subjects were all women, 20 who were clinically healthy and 19 diagnosed with anterior knee pain. All subjects were evaluated and subjected to magnetic resonance exams during OKC and CKC exercise with the knee placed at 15, 30, and 45 degrees of flexion. The parameters evaluated were sulcus angle, patellar tilt angle and patellar displacement using bisect offset. Pearson's r coefficient was used, with p < .05. Our results revealed in knee pain group during CKC and OKC at 15 degrees that the increase in the sulcus angle is associated with a tilt increase and patellar lateral displacement. Comparing sulcus angle, patellar tilt angle and bisect offset values between MVIC in OKC and CKC in the knee pain group, it was observed that patellar tilt angle increased in OKC only with the knee flexed at 30 degrees. Based on our results, we conclude that reduced trochlear depth is correlated with increased lateral patellar tilt and displacement during OKC and CKC at 15 degrees of flexion in people with anterior knee pain. By contrast, 30 degrees of knee flexion in CKC is more recommended in rehabilitation protocols because the patella was more stable than in other positions.
Resumo:
STUDY DESIGN: Controlled laboratory study using a cross-sectional design. OBJECTIVES: To determine whether there are any differences between the sexes in trunk, pelvis, hip, and knee kinematics, hip strength, and gluteal muscle activation during the performance of a single-leg squat in individuals with patellofemoral pain syndrome (PFPS) and control participants. BACKGROUND: Though there is a greater incidence of PFPS in females, PFPS is also quite common in males. Trunk kinematics may affect hip and knee function; however, there is a lack of studies of the influence of the trunk in individuals with PFPS. METHODS: Eighty subjects were distributed into 4 groups: females with PFPS, female controls, males with PFPS, and male controls. Trunk, pelvis, hip, and knee kinematics and gluteal muscle activation were evaluated during a single-leg squat. Hip abduction and external rotation eccentric strength was measured on an isokinetic dynamometer. Group differences were assessed using a 2-way multivariate analysis of variance (sex by PFPS status). RESULTS: Compared to controls, subjects with PFPS had greater ipsilateral trunk lean (mean +/- SD, 9.3 degrees +/- 5.30 degrees versus 6.7 degrees +/- 3.0 degrees; P = .012), contralateral pelvic drop (10.3 degrees +/- 4.7 degrees versus 7.4 degrees 3.8 degrees; P = .003), hip adduction (14.8 degrees +/- 7.8 degrees versus 10.8 degrees +/- 5.6 degrees; P<.0001), and knee abduction (9.2 degrees +/- 5.0 degrees versus 5.8 degrees +/- 3.4 degrees; P<.0001) when performing a single-leg squat. Subjects with PFPS also had 18% less hip abduction and 17% less hip external rotation strength. Compared to female controls, females with PFPS had more hip internal rotation (P<.05) and less muscle activation of the gluteus medius (P = .017) during the single-leg squat. CONCLUSION: Despite many similarities in findings for males and females with PFPS, there may be specific sex differences that warrant consideration in future studies and when clinically evaluating and treating females with PFPS. J Orthop Sports Phys Ther 2012;42(6):491-501, Epub 8 March 2012. doi:10.2519/jospt.2012.3987
Resumo:
Se han eliminado páginas en blanco
Resumo:
Primary stability of stems in cementless total hip replacements is recognized to play a critical role for long-term survival and thus for the success of the overall surgical procedure. In Literature, several studies addressed this important issue. Different approaches have been explored aiming to evaluate the extent of stability achieved during surgery. Some of these are in-vitro protocols while other tools are coinceived for the post-operative assessment of prosthesis migration relative to the host bone. In vitro protocols reported in the literature are not exportable to the operating room. Anyway most of them show a good overall accuracy. The RSA, EBRA and the radiographic analysis are currently used to check the healing process of the implanted femur at different follow-ups, evaluating implant migration, occurance of bone resorption or osteolysis at the interface. These methods are important for follow up and clinical study but do not assist the surgeon during implantation. At the time I started my Ph.D Study in Bioengineering, only one study had been undertaken to measure stability intra-operatively. No follow-up was presented to describe further results obtained with that device. In this scenario, it was believed that an instrument that could measure intra-operatively the stability achieved by an implanted stem would consistently improve the rate of success. This instrument should be accurate and should give to the surgeon during implantation a quick answer concerning the stability of the implanted stem. With this aim, an intra-operative device was designed, developed and validated. The device is meant to help the surgeon to decide how much to press-fit the implant. It is essentially made of a torsional load cell, able to measure the extent of torque applied by the surgeon to test primary stability, an angular sensor that measure the relative angular displacement between stem and femur, a rigid connector that enable connecting the device to the stem, and all the electronics for signals conditioning. The device was successfully validated in-vitro, showing a good overall accuracy in discriminating stable from unstable implants. Repeatability tests showed that the device was reliable. A calibration procedure was then performed in order to convert the angular readout into a linear displacement measurement, which is an information clinically relevant and simple to read in real-time by the surgeon. The second study reported in my thesis, concerns the evaluation of the possibility to have predictive information regarding the primary stability of a cementless stem, by measuring the micromotion of the last rasp used by the surgeon to prepare the femoral canal. This information would be really useful to the surgeon, who could check prior to the implantation process if the planned stem size can achieve a sufficient degree of primary stability, under optimal press fitting conditions. An intra-operative tool was developed to this aim. It was derived from a previously validated device, which was adapted for the specific purpose. The device is able to measure the relative micromotion between the femur and the rasp, when a torsional load is applied. An in-vitro protocol was developed and validated on both composite and cadaveric specimens. High correlation was observed between one of the parameters extracted form the acquisitions made on the rasp and the stability of the corresponding stem, when optimally press-fitted by the surgeon. After tuning in-vitro the protocol as in a closed loop, verification was made on two hip patients, confirming the results obtained in-vitro and highlighting the independence of the rasp indicator from the bone quality, anatomy and preserving conditions of the tested specimens, and from the sharpening of the rasp blades. The third study is related to an approach that have been recently explored in the orthopaedic community, but that was already in use in other scientific fields. It is based on the vibration analysis technique. This method has been successfully used to investigate the mechanical properties of the bone and its application to evaluate the extent of fixation of dental implants has been explored, even if its validity in this field is still under discussion. Several studies have been published recently on the stability assessment of hip implants by vibration analysis. The aim of the reported study was to develop and validate a prototype device based on the vibration analysis technique to measure intra-operatively the extent of implant stability. The expected advantages of a vibration-based device are easier clinical use, smaller dimensions and minor overall cost with respect to other devices based on direct micromotion measurement. The prototype developed consists of a piezoelectric exciter connected to the stem and an accelerometer attached to the femur. Preliminary tests were performed on four composite femurs implanted with a conventional stem. The results showed that the input signal was repeatable and the output could be recorded accurately. The fourth study concerns the application of the device based on the vibration analysis technique to several cases, considering both composite and cadaveric specimens. Different degrees of bone quality were tested, as well as different femur anatomies and several levels of press-fitting were considered. The aim of the study was to verify if it is possible to discriminate between stable and quasi-stable implants, because this is the most challenging detection for the surgeon in the operation room. Moreover, it was possible to validate the measurement protocol by comparing the results of the acquisitions made with the vibration-based tool to two reference measurements made by means of a validated technique, and a validated device. The results highlighted that the most sensitive parameter to stability is the shift in resonance frequency of the stem-bone system, showing high correlation with residual micromotion on all the tested specimens. Thus, it seems possible to discriminate between many levels of stability, from the grossly loosened implant, through the quasi-stable implants, to the definitely stable one. Finally, an additional study was performed on a different type of hip prosthesis, which has recently gained great interest thus becoming fairly popular in some countries in the last few years: the hip resurfacing prosthesis. The study was motivated by the following rationale: although bone-prosthesis micromotion is known to influence the stability of total hip replacement, its effect on the outcome of resurfacing implants has not been investigated in-vitro yet, but only clinically. Thus the work was aimed at verifying if it was possible to apply to the resurfacing prosthesis one of the intraoperative devices just validated for the measurement of the micromotion in the resurfacing implants. To do that, a preliminary study was performed in order to evaluate the extent of migration and the typical elastic movement for an epiphyseal prosthesis. An in-vitro procedure was developed to measure micromotions of resurfacing implants. This included a set of in-vitro loading scenarios that covers the range of directions covered by hip resultant forces in the most typical motor-tasks. The applicability of the protocol was assessed on two different commercial designs and on different head sizes. The repeatability and reproducibility were excellent (comparable to the best previously published protocols for standard cemented hip stems). Results showed that the procedure is accurate enough to detect micromotions of the order of few microns. The protocol proposed was thus completely validated. The results of the study demonstrated that the application of an intra-operative device to the resurfacing implants is not necessary, as the typical micromovement associated to this type of prosthesis could be considered negligible and thus not critical for the stabilization process. Concluding, four intra-operative tools have been developed and fully validated during these three years of research activity. The use in the clinical setting was tested for one of the devices, which could be used right now by the surgeon to evaluate the degree of stability achieved through the press-fitting procedure. The tool adapted to be used on the rasp was a good predictor of the stability of the stem. Thus it could be useful for the surgeon while checking if the pre-operative planning was correct. The device based on the vibration technique showed great accuracy, small dimensions, and thus has a great potential to become an instrument appreciated by the surgeon. It still need a clinical evaluation, and must be industrialized as well. The in-vitro tool worked very well, and can be applied for assessing resurfacing implants pre-clinically.
Resumo:
The theory of the 3D multipole probability tomography method (3D GPT) to image source poles, dipoles, quadrupoles and octopoles, of a geophysical vector or scalar field dataset is developed. A geophysical dataset is assumed to be the response of an aggregation of poles, dipoles, quadrupoles and octopoles. These physical sources are used to reconstruct without a priori assumptions the most probable position and shape of the true geophysical buried sources, by determining the location of their centres and critical points of their boundaries, as corners, wedges and vertices. This theory, then, is adapted to the geoelectrical, gravity and self potential methods. A few synthetic examples using simple geometries and three field examples are discussed in order to demonstrate the notably enhanced resolution power of the new approach. At first, the application to a field example related to a dipole–dipole geoelectrical survey carried out in the archaeological park of Pompei is presented. The survey was finalised to recognize remains of the ancient Roman urban network including roads, squares and buildings, which were buried under the thick pyroclastic cover fallen during the 79 AD Vesuvius eruption. The revealed anomaly structures are ascribed to wellpreserved remnants of some aligned walls of Roman edifices, buried and partially destroyed by the 79 AD Vesuvius pyroclastic fall. Then, a field example related to a gravity survey carried out in the volcanic area of Mount Etna (Sicily, Italy) is presented, aimed at imaging as accurately as possible the differential mass density structure within the first few km of depth inside the volcanic apparatus. An assemblage of vertical prismatic blocks appears to be the most probable gravity model of the Etna apparatus within the first 5 km of depth below sea level. Finally, an experimental SP dataset collected in the Mt. Somma-Vesuvius volcanic district (Naples, Italy) is elaborated in order to define location and shape of the sources of two SP anomalies of opposite sign detected in the northwestern sector of the surveyed area. The modelled sources are interpreted as the polarization state induced by an intense hydrothermal convective flow mechanism within the volcanic apparatus, from the free surface down to about 3 km of depth b.s.l..