995 resultados para nutritional conditions
Resumo:
The xylose conversion to ethanol by Pichia stipitis was studied. In a first step, the necessity of supplementing the fermentation medium with urea. MgSO(4) x 7H(2)O, and/or yeast extract was evaluated through a 2(3) full factorial design. The simultaneous addition of these three nutritional sources to the fermentation medium, in concentrations of 2.3, 1.0, and 3.0 g/l, respectively, showed to be important to improve the ethanol production in detriment of the substrate conversion to cell. In a second stage, fermentation assays performed in a bioreactor under different K(L)a (volumetric oxygen transfer coefficient) conditions made possible understanding the influence of the oxygen transfer on yeast performance, as well as to define the most suitable range of values for an efficient ethanol production. The most promising region to perform this bioconversion process was found to be between 2.3 and 4.9 h(-1), since it promoted the highest ethanol production results with practically exhaustion of the xylose from the medium. These findings contribute for the development of an economical and efficient technology for large scale production of second generation ethanol. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
Introduction: The identification of stages of dietary change and the factors affecting food choices can direct more effective nutritional intervention against coronary heart disease progression. Objective: Identify the stages of change of eating behavior and its relation with nutritional status, food consumption and previous cardiovascular events in patients who underwent coronary angioplasty. Methods: A cross-sectional study with 200 hospitalized patients from a specialized cardiology hospital, after elective coronary angioplasty. They were applied an algorithm that identifies the provision of change of eating habits for a healthier pattern. Variables measured were stages of change of eating behavior, nutritional status, food consumption and cardiovascular events (previous myocardial infarction or angioplasty). It was realized comparison of averages by analysis of variance or Student's test and Chi-square test for qualitative variables. Value of significance was taken at 5%. Results: The patients were classified in the following stages: 36% maintenance, 26% preparation, 17% precontemplation, 12% action and 9% contemplation. It was observed higher cardiovascular events in maintenance/action group (p = 0.04), higher consumption of calories (p = 0.04), meat/eggs (p = 0.01) and sweets (p = 0.03) in preparation stage, comparing to maintenance group, and no association between nutritional status and stages of change (p = 0.13), although 62% of the individuals in maintenance stage were overweight. Conclusions: This work contributed to identifying the stages of change and conditions that favor changes in eating pattern. Even patients that classified themselves into the maintenance stage need to adjust their eating habits in order to reach a healthy weight.
Resumo:
Mycotoxins are contaminants of agricultural products both in the field and during storage and can enter the food chain through contaminated cereals and foods (milk, meat, and eggs) obtained from animals fed mycotoxin contaminated feeds. Mycotoxins are genotoxic carcinogens that cause health and economic problems. Ochratoxin A and fumonisin B1 have been classified by the International Agency for Research on Cancer in 1993, as “possibly carcinogenic to humans” (class 2B). To control mycotoxins induced damages, different strategies have been developed to reduce the growth of mycotoxigenic fungi as well as to decontaminate and/or detoxify mycotoxin contaminated foods and animal feeds. Critical points, target for these strategies, are: prevention of mycotoxin contamination, detoxification of mycotoxins already present in food and feed, inhibition of mycotoxin absorption in the gastrointestinal tract, reduce mycotoxin induced damages when absorption occurs. Decontamination processes, as indicate by FAO, needs the following requisites to reduce toxic and economic impact of mycotoxins: it must destroy, inactivate, or remove mycotoxins; it must not produce or leave toxic and/or carcinogenic/mutagenic residues in the final products or in food products obtained from animals fed decontaminated feed; it must be capable of destroying fungal spores and mycelium in order to avoiding mycotoxin formation under favorable conditions; it should not adversely affect desirable physical and sensory properties of the feedstuff; it has to be technically and economically feasible. One important approach to the prevention of mycotoxicosis in livestock is the addition in the diets of the non-nutritionally adsorbents that bind mycotoxins preventing the absorption in the gastrointestinal tract. Activated carbons, hydrated sodium calcium aluminosilicate (HSCAS), zeolites, bentonites, and certain clays, are the most studied adsorbent and they possess a high affinity for mycotoxins. In recent years, there has been increasing interest on the hypothesis that the absorption in consumed food can be inhibited by microorganisms in the gastrointestinal tract. Numerous investigators showed that some dairy strains of LAB and bifidobacteria were able to bind aflatoxins effectively. There is a strong need for prevention of the mycotoxin-induced damages once the toxin is ingested. Nutritional approaches, such as supplementation of nutrients, food components, or additives with protective effects against mycotoxin toxicity are assuming increasing interest. Since mycotoxins have been known to produce damages by increasing oxidative stress, the protective properties of antioxidant substances have been extensively investigated. Purpose of the present study was to investigate in vitro and in vivo, strategies to counteract mycotoxin threat particularly in swine husbandry. The Ussing chambers technique was applied in the present study that for the first time to investigate in vitro the permeability of OTA and FB1 through rat intestinal mucosa. Results showed that OTA and FB1 were not absorbed from rat small intestine mucosa. Since in vivo absorption of both mycotoxins normally occurs, it is evident that in these experimental conditions Ussing diffusion chambers were not able to assess the intestinal permeability of OTA and FB1. A large number of LAB strains isolated from feces and different gastrointestinal tract regions of pigs and poultry were screened for their ability to remove OTA, FB1, and DON from bacterial medium. Results of this in vitro study showed low efficacy of isolated LAB strains to reduce OTA, FB1, and DON from bacterial medium. An in vivo trial in rats was performed to evaluate the effects of in-feed supplementation of a LAB strain, Pediococcus pentosaceus FBB61, to counteract the toxic effects induced by exposure to OTA contaminated diets. The study allows to conclude that feed supplementation with P. pentosaceus FBB61 ameliorates the oxidative status in liver, and lowers OTA induced oxidative damage in liver and kidney if diet was contaminated by OTA. This P. pentosaceus FBB61 feature joined to its bactericidal activity against Gram positive bacteria and its ability to modulate gut microflora balance in pigs, encourage additional in vivo experiments in order to better understand the potential role of P. pentosaceus FBB61 as probiotic for farm animals and humans. In the present study, in vivo trial on weaned piglets fed FB1 allow to conclude that feeding of 7.32 ppm of FB1 for 6 weeks did not impair growth performance. Deoxynivalenol contamination of feeds was evaluated in an in vivo trial on weaned piglets. The comparison between growth parameters of piglets fed DON contaminated diet and contaminated diet supplemented with the commercial product did not reach the significance level but piglet growth performances were numerically improved when the commercial product was added to DON contaminated diet. Further studies are needed to improve knowledge on mycotoxins intestinal absorption, mechanism for their detoxification in feeds and foods, and nutritional strategies to reduce mycotoxins induced damages in animals and humans. The multifactorial approach acting on each of the various steps could be a promising strategy to counteract mycotoxins damages.
Resumo:
Biochar is the solid C-rich matrix obtained by pyrolysis of biomasses, currently promoted as a soil amendment with the aim to offset anthropogenic C emissions, while ameliorating soil properties and growth conditions. Benefits from biochar seem promising, although scientific understandings are beginning to be explored. In this project, I performed a suite of experiments in controlled and in field conditions with the aims to investigate the effect of biochar on: a) the interaction with minerals; b) Fe nutrition in kiwifruit; c) soil leaching, soil fertility, soil CO2 emissions partitioning, soil bacterial profile and key gene expression of soil nitrification-involved bacteria; d) plant growth, nutritional status, yield, fruit quality and e) its physical-chemical changes as affected by long-term environmental exposure. Biochar released K, P and Mg but retained Fe, Mn, Cu and Zn on its surface which in turn hindered Fe nutrition of kiwifruit trees. A redox reaction on the biochar surface exposed to a Fe source was elucidated. Biochar reduced the amount of leached NH4+-N but increased that of Hg, K, P, Mo, Se and Sn. Furthermore, biochar synergistically interacted with compost increasing soil field capacity, fertility, leaching of DOC, TDN and RSOC, suggesting a priming effect. However, in field conditions, biochar did not affect yield, nutritional status and fruit quality. Actinomadura flavalba, Saccharomonospora viridis, Thermosporomyces composti and Enterobacter spp. were peculiar of the soil amended with biochar plus compost which exhibited the highest band richness and promoted gene expression levels of Nitrosomonas spp., Nitrobacter spp. and enzymatic-related activity. Environmental exposure reduced C, K, pH and water infiltration of biochar which instead resulted in a higher O, Si, N, Na, Al, Ca, Mn and Fe at%. Oxidation occurred on the aged biochar surface, it decreased progressively with depth and induced the development of O-containing functional groups, up to 75nm depth.
Resumo:
Virgin olive oil(VOO) is a product characterized by high economic and nutritional values, because of its superior sensory characteristics and minor compounds (phenols and tocopherols) contents. Since the original quality of VOO may change during its storage, this study aimed to investigate the influence of different storage and shipment conditions on the quality of VOO, by studying different solutions such as filtration, dark storage and shipment inside insulated containers to protect it. Different analytical techniques were used to follow-up the quality changes during virgin olive oil storage and simulated shipments, in terms of basic quality parameters, sensory analysis and evaluation of minor components (phenolic compounds, diglycerides, volatile compounds). Four main research streams were presented in this PhD thesis: The results obtained from the first experimental section revealed that the application of filtration and/or clarification can decrease the unavoidable quality loss of the oil samples during storage, in comparison with unfiltered oil samples. The second section indicated that the virgin olive oil freshness, evaluated by diglycerides content, was mainly affected by the storage time and temperature. The third section revealed that fluctuation in temperature during storage may adversely affect the virgin olive oil quality, in terms of hydrolytic rancidity and oxidation quality. The fourth section showed that virgin olive oil shipped inside insulated containers showed lower hydrolytic and oxidation degradation than those without insulation cover. Overall, this PhD thesis highlighted that application of adequate treatment, such as filtration or clarification, in addition to a good protection against other external variables, such as temperature and light, will improve the stability of virgin olive oil during storage.
Resumo:
Purpose The hypothesis of this clinical study was to determine whether glucocorticoid use and immobility were associated with in-hospital nutritional risk. Methods One hundred and one patients consecutively admitted to the medical wards were enrolled. Current medical conditions, symptoms, medical history, eating and drinking habits, diagnosis, laboratory findings, medications, and anthropometrics were recorded. The Nutrition Risk Score 2002 (NRS-2002) was used as a screening instrument to identify nutritional risk. Results The results confirmed that glucocorticoid use and immobility are independently associated with nutritional risk determined by the NRS-2002. Constipation could be determined as an additional cofactor independently associated with nutritional risk. Conclusions Glucocorticoid treatment, immobility, and constipation are associated with nutritional risk in a mixed hospitalized population. The presence of long-time glucocorticoid use, immobility, or constipation should alert the clinician to check for nutritional status, which is an important factor in mortality and morbidity.
Resumo:
Iron availability in seawater, namely the concentration of dissolved inorganic iron ([Fe']), is affected by changes in pH. Such changes in the availability of iron should be taken into account when investigating the effects of ocean acidification on phytoplankton ecophysiology because iron plays a key role in phytoplankton metabolism. However, changes in iron availability in response to changes in ocean acidity are difficult to quantify specifically using natural seawater because these factors change simultaneously. In the present study, the availability of iron and carbonate chemistry were manipulated individually and simultaneously in the laboratory to examine the effect of each factor on phytoplankton ecophysiology. The effects of various pCO2 conditions (390, 600, and 800 µatm) on the growth, cell size, and elemental stoichiometry (carbon [C], nitrogen [N], phosphorus [P], and silicon [Si]) of the diatom Thalassiosira weissflogii under high iron ([Fe'] = 240 pmol/l) and low iron ([Fe'] = 24 pmol/l) conditions were investigated. Cell volume decreased with increasing pCO2, whereas intracellular C, N, and P concentrations increased with increasing pCO2 only under high iron conditions. Si:C, Si:N, and Si:P ratios decreased with increasing pCO2. It reflects higher production of net C, N, and P with no corresponding change in net Si production under high pCO2 and high iron conditions. In contrast, significant linear relationships between measured parameters and pCO2 were rarely detected under low iron conditions. We conclude that the increasing CO2 levels could affect on the biogeochemical cycling of bioelements selectively under the iron-replete conditions in the coastal ecosystems.
Resumo:
Large scale patterns of ecologically relevant traits may help identify drivers of their variability and conditions beneficial or adverse to the expression of these traits. Antimicrofouling defenses in scleractinian corals regulate the establishment of the associated biofilm as well as the risks of infection. The Saudi Arabian Red Sea coast features a pronounced thermal and nutritional gradient including regions and seasons with potentially stressful conditions to corals. Assessing the patterns of antimicrofouling defenses across the Red Sea may hint at the susceptibility of corals to global change. We investigated microfouling pressure as well as the relative strength of 2 alternative antimicrofouling defenses (chemical antisettlement activity, mucus release) along the pronounced environmental gradient along the Saudi Arabian Red Sea coast in 2 successive years. Microfouling pressure was exceptionally low along most of the coast but sharply increased at the southernmost sites. Mucus release correlated with temperature. Chemical defense tended to anti-correlate with mucus release. As a result, the combined action of mucus release and chemical antimicrofouling defense seemed to warrant sufficient defense against microbes along the entire coast. In the future, however, we expect enhanced energetic strain on corals when warming and/or eutrophication lead to higher bacterial fouling pressure and a shift towards putatively more costly defense by mucus release.
Resumo:
Adding Zn improves crop growth, increases seed yield and also positively affects nutritional quality. After Zn fertilization, there is normally a period of several years in which residual effects provide an adequate supply of Zn to successive crops. Immediately after the application of Zn sources water-soluble Zn slowly but continually decreases. Various factors, including time and moisture conditions, affect the aging process and modify the solubility of the metal in soil and therefore its availability. In previous experiments, we studied the residual effect of synthetic chelates, obtained that the amounts of potentially available Zn decreased in the second cropping year due to aging processes. The present study was undertaken to verify variations in the residual effects of applying four different synthetic Zn sources
Resumo:
Soybean meal (SBM) is the main protein source in livestock feeds. United States (USA), Brazil (BRA), and Argentine (ARG) are the major SBM exporter countries. The nutritive value of SBM varies because genetics, environment, farming conditions, and processing of the beans influence strongly the content and availability of major nutrients. The present research was conducted to determine the influence of origin (USA, BRA and ARG) on nutritive value and protein quality of SBM.
Resumo:
Enhancing the quality of beef meat is an important goal in terms of improving both the nutritional value for the consumer and the commercial value for producers. The aim of this work was to study the effects of different vegetable oil supplements on growth performance, carcass quality and meat quality in beef steers reared under intensive conditions. A total of 240 Blonde D? Aquitaine steers (average BW = 293.7 ± 38.88 kg) were grouped into 24 batches (10 steers/batch) and were randomly assigned to one of the three dietary treatments (eight batches per treatment), each supplemented with either 4% hydrogenated palm oil (PALM) or fatty acids (FAs) from olive oil (OLI) or soybean oil (SOY). No differences in growth performance or carcass quality were observed. For the meat quality analysis, a steer was randomly selected from each batch and the 6th rib on the left half of the carcass was dissected. PALM meat had the highest percentage of 16:0 ( P< 0.05) and the lowest n-6/n-3 polyunsaturated fatty acids (PUFA) ratio ( P< 0.05), OLI had the highest content of t 11-18:1 ( P< 0.01) and c 9,t 11-18:2 ( P< 0.05) and SOY showed the lowest value of monounsaturated fatty acids (MUFA) ( P< 0.001), the highest percentage of PUFA ( P< 0.01) and a lower index of atherogenicity ( P = 0.07) than PALM. No significant differences in the sensory characteristics of the meat were noted. However, the results of the principal component analysis of meat characteristics enabled meat from those steers that consumed fatty acids from olive oil to be differentiated from that of steers that consumed soybean oil.
Resumo:
Foods rich in adenine and hypoxanthine may contribute to the increase of uricemia. Hyperuricemia is associated with other pathological conditions pertaining to metabolic syndrome. Objective: the assessement of the impact of fiber rich diet on uricemia in patients with metabolic syndrome. Methods: the study involved 46 male patients with metabolic syndrome who claimed to have reduced mobility in fingers, hypertension, obesity, hyperglycemia and hyperuricemia. A validated questionnaire about dietary habits was applied at the beginning of the study and after 6 weeks of fiber-rich diet by eliminating from patients diet preparations of animal food and increased intake of vegetable foods. Blood presure, body mass index, blood glucose and uric acids were measured at the beginning of the study and after 6 weeks of fiber rich diet by daily consumption of 2 servings of added grains - 60g totally and vegetables 200g, fruits 300g respectively. Results: The study shows that at baseline all patients had an inadequate dietary intake of dietary fiber, 28.5 ± 2.2 g/day instead of 38 g per day.The increase in fiber intake of 10 ± 5 g/day was associated with a decrease of serum uric acid by 69.87% from 8.3 0.6 mg/dL to 5.8 0.5 mg/dL, p = 0.008, non-significant decrease of BMI (from 26.8 4.5 to 26.4 4.6 kg/m2, p<0.01), significant decrease of glycemia (from 130 0.8 to 105 4.2mg/dL, p <0.001) and significant decrease in blood pressure (from 150 10.6 to 130 8.4 mmHg, p <0.001). Conclusion: The fiber rich diet decreased blood uric acid, blood glucose levels an arterial pressure in patients with metabolic syndrome.
Resumo:
The encyrtid Coccidoxenoides perminutus is a widely distributed parasitoid of citrus mealybug (Planococcus citri). Worldwide, it has been implicated in successful biocontrol in only a few widely separated localities. C perminutus contributes little to control P. citri in field situations in south-east Queensland, Australia, but invades insectary cultures and reduces mealybug populations considerably under these controlled conditions. This discrepancy between poor field performance and good performance under controlled conditions was investigated to establish whether climatic factors inhibit the field performance of this species in the biological control of P. citri. Subsequent laboratory examination of the influence of varied humidities and temperatures on the activity levels and survival of C perminutus revealed a low tolerance for high saturation deficits (i.e., low % RH at high T degreesC) with reduced reproductive output. The influence of different food sources on adult survival and reproduction was also quantified, to establish if the adverse effects of climate could be overcome by supplementing adult diet. Neither honeydew from their mealybug hosts nor nectar from Alphitonia flowers significantly enhanced parasitoid survival. A subsequent test of five nectar species revealed a significant difference in their influence on C. perminutus survival and reproduction, with only Alpinia zerumbet proving to be as suitable as honey. The floral species that proved suitable in the laboratory need to be checked for their attractiveness to C perminutus in the field and for their ability to enhance the survival and reproductive output of parasitoids. This information suggests that the prevailing dry conditions in south-east Queensland citrus-growing areas apparently impede successful biological control of P. citri by C perminutus, but possibilities are available for habitat manipulation (by providing suitable nectar sources for adult parasitoids) to conserve and enhance C perminutus activity in the field. (C) 2004 Elsevier Inc. All rights reserved.
Resumo:
Objectives: To assess the influence of moderate, acute weight loss on on-water rowing performance when aggressive nutritional recovery strategies were used in the two hours between weigh in and racing. Methods: Competitive rowers (n=17) undertook three on-water 1800 m time trials under cool conditions ( mean (SD) temperature 8.4 (2.0)degrees C), each separated by 48 hours. No weight limit was imposed for the first time trial-that is, unrestricted body mass (UNR1). However, one of the remaining two trials followed a 4% loss in body mass in the previous 24 hours (WT-4%). No weight limit was imposed for the other trial (UNR2). Aggressive nutritional recovery strategies (WT-4%, 2.3 g/kg carbohydrate, 34 mg/kg Na+, and 28.4 ml/kg fluid; UNR, ad libitum) were used in the first 90 minutes of the two hours between weigh in and performance trials. Results: WT-4% had only a small and statistically non-significant effect on the on-water time trial performance ( mean 1.0 second, 95% confidence interval (CI) 20.9 to 2.8; p=0.29) compared with UNR. This was despite a significant decrease in plasma volume at the time of weigh in for WT-4% compared with UNR (-9.2%, 95% CI -12.8% to -5.6%; p
Resumo:
The role of nutritional supplementation in prevention of onset or progression of ocular disease is of interest to health care professionals and patients. The aim of this review is to identify those antioxidants most appropriate for inclusion in an ideal ocular nutritional supplement, suitable for those with a family history of glaucoma, cataract, or age-related macular disease, or lifestyle factors predisposing onset of these conditions, such as smoking, poor nutritional status, or high levels of sunlight exposure. It would also be suitable for those with early stages of age-related ocular disease. Literature searches were carried out on Web of Science and PubMed for articles relating to the use of nutrients in ocular disease. Those highlighted for possible inclusion were vitamins A, B, C and E, carotenoids beta-carotene, lutein, and zeaxanthin, minerals selenium and zinc, and the herb, Ginkgo biloba. Conflicting evidence is presented for vitamins A and E in prevention of ocular disease; these vitamins have roles in the production of rhodopsin and prevention of lipid peroxidation respectively. B vitamins have been linked with a reduced risk of cataract and studies have provided evidence supporting a protective role of vitamin C in cataract prevention. Beta-carotene is active in the prevention of free radical formation, but has been linked with an increased risk of lung cancer in smokers. Improvements in visual function in patients with age-related macular disease have been noted with lutein and zeaxanthin supplementation. Selenium has been linked with a reduced risk of cataract and activates the antioxidant enzyme glutathione peroxidase, protecting cell membranes from oxidative damage while zinc, although an essential component of antioxidant enzymes, has been highlighted for risk of adverse effects. As well as reducing platelet aggregation and increasing vasodilation, Gingko biloba has been linked with improvements in pre-existing field damage in some patients with normal tension glaucoma. We advocate that vitamins C and E, and lutein/zeaxanthin should be included in our theoretically ideal ocular nutritional supplement.