853 resultados para network learning
Resumo:
In this paper we look at how a web-based social software can be used to make qualitative data analysis of online peer-to-peer learning experiences. Specifically, we propose to use Cohere, a web-based social sense-making tool, to observe, track, annotate and visualize discussion group activities in online courses. We define a specific methodology for data observation and structuring, and present results of the analysis of peer interactions conducted in discussion forum in a real case study of a P2PU course. Finally we discuss how network visualization and analysis can be used to gather a better understanding of the peer-to-peer learning experience. To do so, we provide preliminary insights on the social, dialogical and conceptual connections that have been generated within one online discussion group.
Resumo:
This article presents preliminary findings from a research study conducted by the Institute for the Study of Knowledge Management in Education on the role of open educational resources (OER) in transforming pedagogy. Based on a study of art and humanities teachers participating in an OER training network, the study reveals how exposure to OER resources and tools support collaboration among teachers, as well as new conversations about teaching practices. These findings have implications for engaging teachers in adopting new OER use practices, and for how OER can be integrated as a model for innovation in teaching and in resource development.
Resumo:
This paper shows how instructors can use the problem‐based learning method to introduce producer theory and market structure in intermediate microeconomics courses. The paper proposes a framework where different decision problems are presented to students, who are asked to imagine that they are the managers of a firm who need to solve a problem in a particular business setting. In this setting, the instructors’ role isto provide both guidance to facilitate student learning and content knowledge on a just‐in‐time basis
Resumo:
This paper proposes a hybrid coordination method for behavior-based control architectures. The hybrid method takes advantages of the robustness and modularity in competitive approaches as well as optimized trajectories in cooperative ones. This paper shows the feasibility of applying this hybrid method with a 3D-navigation to an autonomous underwater vehicle (AUV). The behaviors are learnt online by means of reinforcement learning. A continuous Q-learning implemented with a feed-forward neural network is employed. Realistic simulations were carried out. The results obtained show the good performance of the hybrid method on behavior coordination as well as the convergence of the behaviors
Resumo:
The purpose of this paper is to propose a Neural-Q_learning approach designed for online learning of simple and reactive robot behaviors. In this approach, the Q_function is generalized by a multi-layer neural network allowing the use of continuous states and actions. The algorithm uses a database of the most recent learning samples to accelerate and guarantee the convergence. Each Neural-Q_learning function represents an independent, reactive and adaptive behavior which maps sensorial states to robot control actions. A group of these behaviors constitutes a reactive control scheme designed to fulfill simple missions. The paper centers on the description of the Neural-Q_learning based behaviors showing their performance with an underwater robot in a target following task. Real experiments demonstrate the convergence and stability of the learning system, pointing out its suitability for online robot learning. Advantages and limitations are discussed
Resumo:
Reinforcement learning (RL) is a very suitable technique for robot learning, as it can learn in unknown environments and in real-time computation. The main difficulties in adapting classic RL algorithms to robotic systems are the generalization problem and the correct observation of the Markovian state. This paper attempts to solve the generalization problem by proposing the semi-online neural-Q_learning algorithm (SONQL). The algorithm uses the classic Q_learning technique with two modifications. First, a neural network (NN) approximates the Q_function allowing the use of continuous states and actions. Second, a database of the most representative learning samples accelerates and stabilizes the convergence. The term semi-online is referred to the fact that the algorithm uses the current but also past learning samples. However, the algorithm is able to learn in real-time while the robot is interacting with the environment. The paper shows simulated results with the "mountain-car" benchmark and, also, real results with an underwater robot in a target following behavior
Resumo:
This paper presents a hybrid behavior-based scheme using reinforcement learning for high-level control of autonomous underwater vehicles (AUVs). Two main features of the presented approach are hybrid behavior coordination and semi on-line neural-Q_learning (SONQL). Hybrid behavior coordination takes advantages of robustness and modularity in the competitive approach as well as efficient trajectories in the cooperative approach. SONQL, a new continuous approach of the Q_learning algorithm with a multilayer neural network is used to learn behavior state/action mapping online. Experimental results show the feasibility of the presented approach for AUVs
Resumo:
BACKGROUND The study of the attentional system remains a challenge for current neuroscience. The "Attention Network Test" (ANT) was designed to study simultaneously three different attentional networks (alerting, orienting, and executive) based in subtraction of different experimental conditions. However, some studies recommend caution with these calculations due to the interactions between the attentional networks. In particular, it is highly relevant that several interpretations about attentional impairment have arisen from these calculations in diverse pathologies. Event related potentials (ERPs) and neural source analysis can be applied to disentangle the relationships between these attentional networks not specifically shown by behavioral measures. RESULTS This study shows that there is a basic level of alerting (tonic alerting) in the no cue (NC) condition, represented by a slow negative trend in the ERP trace prior to the onset of the target stimuli. A progressive increase in the CNV amplitude related to the amount of information provided by the cue conditions is also shown. Neural source analysis reveals specific modulations of the CNV related to a task-related expectancy presented in the NC condition; a late modulation triggered by the central cue (CC) condition and probably representing a generic motor preparation; and an early and late modulation for spatial cue (SC) condition suggesting specific motor and sensory preactivation. Finally, the first component in the information processing of the target stimuli modulated by the interaction between orienting network and the executive system can be represented by N1. CONCLUSIONS The ANT is useful as a paradigm to study specific attentional mechanisms and their interactions. However, calculation of network effects is based in subtractions with non-comparable experimental conditions, as evidenced by the present data, which can induce misinterpretations in the study of the attentional capacity in human subjects.
Resumo:
I use a multi-layer feedforward perceptron, with backpropagation learning implemented via stochastic gradient descent, to extrapolate the volatility smile of Euribor derivatives over low-strikes by training the network on parametric prices.
Resumo:
This paper presents and discusses the use of Bayesian procedures - introduced through the use of Bayesian networks in Part I of this series of papers - for 'learning' probabilities from data. The discussion will relate to a set of real data on characteristics of black toners commonly used in printing and copying devices. Particular attention is drawn to the incorporation of the proposed procedures as an integral part in probabilistic inference schemes (notably in the form of Bayesian networks) that are intended to address uncertainties related to particular propositions of interest (e.g., whether or not a sample originates from a particular source). The conceptual tenets of the proposed methodologies are presented along with aspects of their practical implementation using currently available Bayesian network software.
Resumo:
This is the Annual Report for Fiscal Year 2004 (July 1, 2003-June 30, 2004) for the Iowa Communications Network.
Resumo:
One of the most relevant difficulties faced by first-year undergraduate students is to settle into the educational environment of universities. This paper presents a case study that proposes a computer-assisted collaborative experience designed to help students in their transition from high school to university. This is done by facilitating their first contact with the campus and its services, the university community, methodologies and activities. The experience combines individual and collaborative activities, conducted in and out of the classroom, structured following the Jigsaw Collaborative Learning Flow Pattern. A specific environment including portable technologies with network and computer applications has been developed to support and facilitate the orchestration of a flow of learning activities into a single integrated learning setting. The result is a Computer-Supported Collaborative Blended Learning scenario, which has been evaluated with first-year university students of the degrees of Software and Audiovisual Engineering within the subject Introduction to Information and Communications Technologies. The findings reveal that the scenario improves significantly students’ interest in their studies and their understanding about the campus and services provided. The environment is also an innovative approach to successfully support the heterogeneous activities conducted by both teachers and students during the scenario. This paper introduces the goals and context of the case study, describes how the technology was employed to conduct the learning scenario, the evaluation methods and the main results of the experience.
Resumo:
This is the Annual Report for Fiscal Year 2005 (July 1, 2004-June 30, 2005) for the Iowa Communications Network.
Resumo:
This annual report covers highlights and financial information for fiscal year 2006 for the ICN. Any questions may be directed to Public Relations Manager Gail Geery.
Resumo:
In this paper we study the relevance of multiple kernel learning (MKL) for the automatic selection of time series inputs. Recently, MKL has gained great attention in the machine learning community due to its flexibility in modelling complex patterns and performing feature selection. In general, MKL constructs the kernel as a weighted linear combination of basis kernels, exploiting different sources of information. An efficient algorithm wrapping a Support Vector Regression model for optimizing the MKL weights, named SimpleMKL, is used for the analysis. In this sense, MKL performs feature selection by discarding inputs/kernels with low or null weights. The approach proposed is tested with simulated linear and nonlinear time series (AutoRegressive, Henon and Lorenz series).