916 resultados para modeling and prediction
Resumo:
Using a Ginzburg-Landau model for the magnetic degrees of freedom with coupling to disorder, we demonstrate through simulations the existence of stripelike magnetic precursors recently observed in Co-Ni-Al alloys above the Curie temperature. We characterize these magnetic modulations by means of the temperature dependence of local magnetization distribution, magnetized volume fraction, and magnetic susceptibility. We also obtain a temperature-disorder strength phase diagram in which a magnetic tweed phase exists in a small region between the paramagnetic and dipolar phases.
Resumo:
Over the last decades, calibration techniques have been widely used to improve the accuracy of robots and machine tools since they only involve software modification instead of changing the design and manufacture of the hardware. Traditionally, there are four steps are required for a calibration, i.e. error modeling, measurement, parameter identification and compensation. The objective of this thesis is to propose a method for the kinematics analysis and error modeling of a newly developed hybrid redundant robot IWR (Intersector Welding Robot), which possesses ten degrees of freedom (DOF) where 6-DOF in parallel and additional 4-DOF in serial. In this article, the problem of kinematics modeling and error modeling of the proposed IWR robot are discussed. Based on the vector arithmetic method, the kinematics model and the sensitivity model of the end-effector subject to the structure parameters is derived and analyzed. The relations between the pose (position and orientation) accuracy and manufacturing tolerances, actuation errors, and connection errors are formulated. Computer simulation is performed to examine the validity and effectiveness of the proposed method.
Resumo:
In this thesis the main objective is to examine and model configuration system and related processes. When and where configuration information is created in product development process and how it is utilized in order-delivery process? These two processes are the essential part of the whole configuration system from the information point of view. Empirical part of the work was done as a constructive research inside a company that follows a mass customization approach. Data models and documentation are created for different development stages of the configuration system. A base data model already existed for new structures and relations between these structures. This model was used as the basis for the later data modeling work. Data models include different data structures, their key objects and attributes, and relations between. Representation of configuration rules for the to-be configuration system was defined as one of the key focus point. Further, it is examined how the customer needs and requirements information can be integrated into the product development process. Requirements hierarchy and classification system is presented. It is shown how individual requirement specifications can be connected for physical design structure via features by developing the existing base data model further.
Resumo:
Svavel förekommer i kol och olja och oxideras vid förbränning till svaveldioxid (SO2). Årligen utsläpps stora mängder svaveldioxid som åstadkommer sura regn, minskning av stratosfäriskt ozon och sjukdomar. Av dessa orsaker är det nödvändigt att minska utsläppen av svaveldioxid. Den teknologi som rör planering av reaktorer och processer för rökgasavsvavling (FGD) har utvecklats kraftigt och idag använder man olika typer av lösningar. De vanligaste alternativen för FGD är våtskrubber- och semitorra skrubbersystem (Spray Dry Scrubbers, SDS) och injektionsprocesser för absorbenter. SDS-processer har studerats bland annat av Ahlbeck [4] och Klingspor [5] och injektionsprocesser av Alvfors [6]. Kalksten, som i huvusak består av kalciumkarbonat, används i rökgasavsvavling på grund av sin förmåga att binda svavel i form av sulfatsalter. Den vanligaste rökgasavsvavlingsmetoden är våtskrubbning, där det sedimentära stenmaterialets upplösningshastighet är en av de faktorer som påverkar resultatet mest. Utvärdering av kalkstensreaktivitet är därför speciellt viktig vid planering och drift av anläggningar för rökgasavsvavling. Målsättningen med detta arbete var att modellera upplösningen av olika typers kalksten för att få en kvantitativ utvärdering av kvaliteten på de analyserade proverna. Därtill testades även karbonatbiprodukter från stålindustrin för att utvärdera möjligheter att använda andra råmaterial. Det transienta förloppet har analyserats, varvid upplösningshastigheten modellerades bl.a. i avseende på tid och pH. Under arbetets gång har antalet empiriska korrelationer minskats till fördel för fysikaliska modeller av diffusiva och konvektiva masstransportfenomen. En målsättning var att skapa en effektiv och snabb metod för att testa olika absorbenter för rökgasavsvavling under transienta förlopp. I arbetet användes PSD-analys, gjordes pH-mätningar och andra utvärderingar av de fysikaliska parametrar som ingår i beräkningarna. On-line mätningar för de icke-stationära variablerna tid och pH ger möjlighet att eliminera osäkerheter. Vissa modeller kan vara komplicerade. En modell för upplösningshastigheten med mer detaljerad utvärdering av parametrar och färre approximationer är därför nödvändig då man vill utvärdera reaktionshastigheten för fasta partiklar i sur miljö. Arbetet utfördes under fyra år och fem peer review-artiklar ingår i avhandlingen.
Resumo:
This thesis considers modeling and analysis of noise and interconnects in onchip communication. Besides transistor count and speed, the capabilities of a modern design are often limited by on-chip communication links. These links typically consist of multiple interconnects that run parallel to each other for long distances between functional or memory blocks. Due to the scaling of technology, the interconnects have considerable electrical parasitics that affect their performance, power dissipation and signal integrity. Furthermore, because of electromagnetic coupling, the interconnects in the link need to be considered as an interacting group instead of as isolated signal paths. There is a need for accurate and computationally effective models in the early stages of the chip design process to assess or optimize issues affecting these interconnects. For this purpose, a set of analytical models is developed for on-chip data links in this thesis. First, a model is proposed for modeling crosstalk and intersymbol interference. The model takes into account the effects of inductance, initial states and bit sequences. Intersymbol interference is shown to affect crosstalk voltage and propagation delay depending on bus throughput and the amount of inductance. Next, a model is proposed for the switching current of a coupled bus. The model is combined with an existing model to evaluate power supply noise. The model is then applied to reduce both functional crosstalk and power supply noise caused by a bus as a trade-off with time. The proposed reduction method is shown to be effective in reducing long-range crosstalk noise. The effects of process variation on encoded signaling are then modeled. In encoded signaling, the input signals to a bus are encoded using additional signaling circuitry. The proposed model includes variation in both the signaling circuitry and in the wires to calculate the total delay variation of a bus. The model is applied to study level-encoded dual-rail and 1-of-4 signaling. In addition to regular voltage-mode and encoded voltage-mode signaling, current-mode signaling is a promising technique for global communication. A model for energy dissipation in RLC current-mode signaling is proposed in the thesis. The energy is derived separately for the driver, wire and receiver termination.
Resumo:
ABSTRACT Monitoring analyses aim to understand the processes that drive changes in forest structure and, along with prediction studies, may assist in the management planning and conservation of forest remnants. The objective of this study was to analyze the forest dynamics in two Atlantic rainforest fragments in Pernambuco, Brazil, and to predict their future forest diameter structure using the Markov chain model. We used continuous forest inventory data from three surveys in two forest fragments of 87 ha (F1) and 388 ha (F2). We calculated the annual rates of mortality and recruitment, the mean annual increment, and the basal area for each of the 3-year periods. Data from the first and second surveys were used to project the third inventory measurements, which were compared to the observed values in the permanent plots using chi-squared tests (a = 0.05). In F1, a decrease in the number of individuals was observed due to mortality rates being higher than recruitment rates; however, there was an increase in the basal area. In this fragment, the fit to the Markov model was adequate. In F2, there was an increase in both the basal area and the number of individuals during the 6-year period due to the recruitment rate exceeding the mortality rate. For this fragment, the fit of the model was unacceptable. Hence, for the studied fragments, the demographic rates influenced the stem density more than the floristic composition. Yet, even with these intense dynamics, both fragments showed active growth.
Resumo:
ABSTRACT This study aimed to verify the differences in radiation intensity as a function of distinct relief exposure surfaces and to quantify these effects on the leaf area index (LAI) and other variables expressing eucalyptus forest productivity for simulations in a process-based growth model. The study was carried out at two contrasting edaphoclimatic locations in the Rio Doce basin in Minas Gerais, Brazil. Two stands with 32-year-old plantations were used, allocating fixed plots in locations with northern and southern exposure surfaces. The meteorological data were obtained from two automated weather stations located near the study sites. Solar radiation was corrected for terrain inclination and exposure surfaces, as it is measured based on the plane, perpendicularly to the vertical location. The LAI values collected in the field were used. For the comparative simulations in productivity variation, the mechanistic 3PG model was used, considering the relief exposure surfaces. It was verified that during most of the year, the southern surfaces showed lower availability of incident solar radiation, resulting in up to 66% losses, compared to the same surface considered plane, probably related to its geographical location and higher declivity. Higher values were obtained for the plantings located on the northern surface for the variables LAI, volume and mean annual wood increase, with this tendency being repeated in the 3PG model simulations.
Resumo:
In the forced-air cooling process of fruits occurs, besides the convective heat transfer, the mass transfer by evaporation. The energy need in the evaporation is taken from fruit that has its temperature lowered. In this study it has been proposed the use of empirical correlations for calculating the convective heat transfer coefficient as a function of surface temperature of the strawberry during the cooling process. The aim of this variation of the convective coefficient is to compensate the effect of evaporation in the heat transfer process. Linear and exponential correlations are tested, both with two adjustable parameters. The simulations are performed using experimental conditions reported in the literature for the cooling of strawberries. The results confirm the suitability of the proposed methodology.
Resumo:
To obtain the desirable accuracy of a robot, there are two techniques available. The first option would be to make the robot match the nominal mathematic model. In other words, the manufacturing and assembling tolerances of every part would be extremely tight so that all of the various parameters would match the “design” or “nominal” values as closely as possible. This method can satisfy most of the accuracy requirements, but the cost would increase dramatically as the accuracy requirement increases. Alternatively, a more cost-effective solution is to build a manipulator with relaxed manufacturing and assembling tolerances. By modifying the mathematical model in the controller, the actual errors of the robot can be compensated. This is the essence of robot calibration. Simply put, robot calibration is the process of defining an appropriate error model and then identifying the various parameter errors that make the error model match the robot as closely as possible. This work focuses on kinematic calibration of a 10 degree-of-freedom (DOF) redundant serial-parallel hybrid robot. The robot consists of a 4-DOF serial mechanism and a 6-DOF hexapod parallel manipulator. The redundant 4-DOF serial structure is used to enlarge workspace and the 6-DOF hexapod manipulator is used to provide high load capabilities and stiffness for the whole structure. The main objective of the study is to develop a suitable calibration method to improve the accuracy of the redundant serial-parallel hybrid robot. To this end, a Denavit–Hartenberg (DH) hybrid error model and a Product-of-Exponential (POE) error model are developed for error modeling of the proposed robot. Furthermore, two kinds of global optimization methods, i.e. the differential-evolution (DE) algorithm and the Markov Chain Monte Carlo (MCMC) algorithm, are employed to identify the parameter errors of the derived error model. A measurement method based on a 3-2-1 wire-based pose estimation system is proposed and implemented in a Solidworks environment to simulate the real experimental validations. Numerical simulations and Solidworks prototype-model validations are carried out on the hybrid robot to verify the effectiveness, accuracy and robustness of the calibration algorithms.
Resumo:
In this doctoral thesis, a power conversion unit for a 10 kWsolid oxide fuel cell is modeled, and a suitable control system is designed. The need for research was identified based on an observation that there was no information available about the characteristics of the solid oxide fuel cell from the perspective of power electronics and the control system, and suitable control methods had not previously been studied in the literature. In addition, because of the digital implementation of the control system, the inherent characteristics of the digital system had to be taken into account in the characteristics of the solid oxide fuel cell (SOFC). The characteristics of the solid oxide fuel cell as well the methods for the modeling and control of the DC/DC converter and the grid converter are studied by a literature survey. Based on the survey, the characteristics of the SOFC as an electrical power source are identified, and a solution to the interfacing of the SOFC in distributed generation is proposed. A mathematical model of the power conversion unit is provided, and the control design for the DC/DC converter and the grid converter is made based on the proposed interfacing solution. The limit cycling phenomenon is identified as a source of low-frequency current ripple, which is found to be insignificant when connected to a grid-tied converter. A method to mitigate a second harmonic originating from the grid interface is proposed, and practical considerations of the operation with the solid oxide fuel cell plant are presented. At the theoretical level, the thesis discusses and summarizes the methods to successfully derive a model for a DC/DC converter, a grid converter, and a power conversion unit. The results of this doctoral thesis can also be used in other applications, and the models and methods can be adopted to similar applications such as photovoltaic systems. When comparing the results with the objectives of the doctoral thesis, we may conclude that the objectives set for the work are met. In this doctoral thesis, theoretical and practical guidelines are presented for the successful control design to connect a SOFC-based distributed generation plant to the utility grid.
Resumo:
The importance of efficient supply chain management has increased due to globalization and the blurring of organizational boundaries. Various supply chain management technologies have been identified to drive organizational profitability and financial performance. Organizations have historically been concentrating heavily on the flow of goods and services, while less attention has been dedicated to the flow of money. While supply chains are becoming more transparent and automated, new opportunities for financial supply chain management have emerged through information technology solutions and comprehensive financial supply chain management strategies. This research concentrates on the end part of the purchasing process which is the handling of invoices. Efficient invoice processing can have an impact on organizations working capital management and thus provide companies with better readiness to face the challenges related to cash management. Leveraging a process mining solution the aim of this research was to examine the automated invoice handling process of four different organizations. The invoice data was collected from each organizations invoice processing system. The sample included all the invoices organizations had processed during the year 2012. The main objective was to find out whether e-invoices are faster to process in an automated invoice processing solution than scanned invoices (post entry into invoice processing solution). Other objectives included looking into the longest lead times between process steps and the impact of manual process steps on cycle time. Processing of invoices from maverick purchases was also examined. Based on the results of the research and previous literature on the subject, suggestions for improving the process were proposed. The results of the research indicate that scanned invoices were processed faster than e-invoices. This is mostly due to the more complex processing of e-invoices. It should be noted however that the manual tasks related to turning a paper invoice into electronic format through scanning are ignored in this research. The transitions with the longest lead times in the invoice handling process included both pre-automated steps as well as manual steps performed by humans. When the most common manual steps were examined in more detail, it was clear that these steps had a prolonging impact on the process. Regarding invoices from maverick purchases the evidence shows that these invoices were slower to process than invoices from purchases conducted through e-procurement systems and from preferred suppliers. Suggestions on how to improve the process included: increasing invoice matching, reducing of manual steps and leveraging of different value added services such as invoice validation service, mobile solutions and supply chain financing services. For companies that have already reaped all the process efficiencies the next step is to engage in collaborative financial supply chain management strategies that can benefit the whole supply chain.
Resumo:
The objective of this work is to describe the design and the implementation of an experiment to study the dynamics and the active control of a slewing multi-link flexible structure. The experimental apparatus was designed to be representative of a flexible space structure such as a satellite with multiple flexible appendages. In this study we describe the design procedures, the analog and digital instrumentation, the analytical modeling together with model validation studies carried out through experimental modal testing and parametric system identification studies in the frequency domain. Preliminary results of a simple positional control where the sensor and the actuator are positioned physically at the same point is also described.
Resumo:
Industrial applications demand that robots operate in agreement with the position and orientation of their end effector. It is necessary to solve the kinematics inverse problem. This allows the displacement of the joints of the manipulator to be determined, to accomplish a given objective. Complete studies of dynamical control of joint robotics are also necessary. Initially, this article focuses on the implementation of numerical algorithms for the solution of the kinematics inverse problem and the modeling and simulation of dynamic systems. This is done using real time implementation. The modeling and simulation of dynamic systems are performed emphasizing off-line programming. In sequence, a complete study of the control strategies is carried out through the study of several elements of a robotic joint, such as: DC motor, inertia, and gearbox. Finally a trajectory generator, used as input for a generic group of joints, is developed and a proposal of the controller's implementation of joints, using EPLD development system, is presented.
Resumo:
The power rating of wind turbines is constantly increasing; however, keeping the voltage rating at the low-voltage level results in high kilo-ampere currents. An alternative for increasing the power levels without raising the voltage level is provided by multiphase machines. Multiphase machines are used for instance in ship propulsion systems, aerospace applications, electric vehicles, and in other high-power applications including wind energy conversion systems. A machine model in an appropriate reference frame is required in order to design an efficient control for the electric drive. Modeling of multiphase machines poses a challenge because of the mutual couplings between the phases. Mutual couplings degrade the drive performance unless they are properly considered. In certain multiphase machines there is also a problem of high current harmonics, which are easily generated because of the small current path impedance of the harmonic components. However, multiphase machines provide special characteristics compared with the three-phase counterparts: Multiphase machines have a better fault tolerance, and are thus more robust. In addition, the controlled power can be divided among more inverter legs by increasing the number of phases. Moreover, the torque pulsation can be decreased and the harmonic frequency of the torque ripple increased by an appropriate multiphase configuration. By increasing the number of phases it is also possible to obtain more torque per RMS ampere for the same volume, and thus, increase the power density. In this doctoral thesis, a decoupled d–q model of double-star permanent-magnet (PM) synchronous machines is derived based on the inductance matrix diagonalization. The double-star machine is a special type of multiphase machines. Its armature consists of two three-phase winding sets, which are commonly displaced by 30 electrical degrees. In this study, the displacement angle between the sets is considered a parameter. The diagonalization of the inductance matrix results in a simplified model structure, in which the mutual couplings between the reference frames are eliminated. Moreover, the current harmonics are mapped into a reference frame, in which they can be easily controlled. The work also presents methods to determine the machine inductances by a finite-element analysis and by voltage-source inverters on-site. The derived model is validated by experimental results obtained with an example double-star interior PM (IPM) synchronous machine having the sets displaced by 30 electrical degrees. The derived transformation, and consequently, the decoupled d–q machine model, are shown to model the behavior of an actual machine with an acceptable accuracy. Thus, the proposed model is suitable to be used for the model-based control design of electric drives consisting of double-star IPM synchronous machines.
Resumo:
Malaria continues to infect millions and kill hundreds of thousands of people worldwide each year, despite over a century of research and attempts to control and eliminate this infectious disease. Challenges such as the development and spread of drug resistant malaria parasites, insecticide resistance to mosquitoes, climate change, the presence of individuals with subpatent malaria infections which normally are asymptomatic and behavioral plasticity in the mosquito hinder the prospects of malaria control and elimination. In this thesis, mathematical models of malaria transmission and control that address the role of drug resistance, immunity, iron supplementation and anemia, immigration and visitation, and the presence of asymptomatic carriers in malaria transmission are developed. A within-host mathematical model of severe Plasmodium falciparum malaria is also developed. First, a deterministic mathematical model for transmission of antimalarial drug resistance parasites with superinfection is developed and analyzed. The possibility of increase in the risk of superinfection due to iron supplementation and fortification in malaria endemic areas is discussed. The model results calls upon stakeholders to weigh the pros and cons of iron supplementation to individuals living in malaria endemic regions. Second, a deterministic model of transmission of drug resistant malaria parasites, including the inflow of infective immigrants, is presented and analyzed. The optimal control theory is applied to this model to study the impact of various malaria and vector control strategies, such as screening of immigrants, treatment of drug-sensitive infections, treatment of drug-resistant infections, and the use of insecticide-treated bed nets and indoor spraying of mosquitoes. The results of the model emphasize the importance of using a combination of all four controls tools for effective malaria intervention. Next, a two-age-class mathematical model for malaria transmission with asymptomatic carriers is developed and analyzed. In development of this model, four possible control measures are analyzed: the use of long-lasting treated mosquito nets, indoor residual spraying, screening and treatment of symptomatic, and screening and treatment of asymptomatic individuals. The numerical results show that a disease-free equilibrium can be attained if all four control measures are used. A common pitfall for most epidemiological models is the absence of real data; model-based conclusions have to be drawn based on uncertain parameter values. In this thesis, an approach to study the robustness of optimal control solutions under such parameter uncertainty is presented. Numerical analysis of the optimal control problem in the presence of parameter uncertainty demonstrate the robustness of the optimal control approach that: when a comprehensive control strategy is used the main conclusions of the optimal control remain unchanged, even if inevitable variability remains in the control profiles. The results provide a promising framework for the design of cost-effective strategies for disease control with multiple interventions, even under considerable uncertainty of model parameters. Finally, a separate work modeling the within-host Plasmodium falciparum infection in humans is presented. The developed model allows re-infection of already-infected red blood cells. The model hypothesizes that in severe malaria due to parasite quest for survival and rapid multiplication, the Plasmodium falciparum can be absorbed in the already-infected red blood cells which accelerates the rupture rate and consequently cause anemia. Analysis of the model and parameter identifiability using Markov chain Monte Carlo methods is presented.