879 resultados para model-based
Resumo:
Self-excited oscillation is becoming a major issue in low-emission, lean partially premixed combustion systems, and active control has been shown to be a feasible method to suppress such instabilities. A number of robust control methods are employed to obtain a feedback controller and it is observed that the robustness to system uncertainty is significantly better for a low complexity controller in spite of the norms being similar. Moreover, we demonstrate that closed-loop stability for such a complex system can be proved via use of the integral quadratic constraint method. Open- and closed-loop nonlinear simulations are provided. © 2013 Copyright Taylor and Francis Group, LLC.
Resumo:
This paper addresses devising a reliable model-based Harmonic-Aware Matching Pursuit (HAMP) for reconstructing sparse harmonic signals from their compressed samples. The performance guarantees of HAMP are provided; they illustrate that the introduced HAMP requires less data measurements and has lower computational cost compared with other greedy techniques. The complexity of formulating a structured sparse approximation algorithm is highlighted and the inapplicability of the conventional thresholding operator to the harmonic signal model is demonstrated. The harmonic sequential deletion algorithm is subsequently proposed and other sparse approximation methods are evaluated. The superior performance of HAMP is depicted in the presented experiments. © 2013 IEEE.
Resumo:
Formulation of a 16-term error model, based on the four-port ABCD-matrix and voltage and current variables, is outlined. Matrices A, B, C, and D are each 2 x 2 submatrices of the complete 4 x 4 error matrix. The corresponding equations are linear in terms of the error parameters, which simplifies the calibration process. The parallelism with the network analyzer calibration procedures and the requirement of five two-port calibration measurements are stressed. Principles for robust choice of equations are presented. While the formulation is suitable for any network analyzer measurement, it is expected to be a useful alternative for the nonlinear y-parameter approach used in intrinsic semiconductor electrical and noise parameter measurements and parasitics' deembedding.
Resumo:
A mobile agent system model based on the servlet technology is presented, the constitution and working process of the system are analyzed. The implementation of key parts of this model and the current development situation as well as the development trend of mobile agent technology are introduced. The mobile agent system model enhances its internal structure recognition and facilitates the system expansion and reformation. The remotely mobile agent control method by means of the protocol modification is presented.
Resumo:
A polynomial time algorithm (pruned correspondence search, PCS) with good average case performance for solving a wide class of geometric maximal matching problems, including the problem of recognizing 3D objects from a single 2D image, is presented. Efficient verification algorithms, based on a linear representation of location constraints, are given for the case of affine transformations among vector spaces and for the case of rigid 2D and 3D transformations with scale. Some preliminary experiments suggest that PCS is a practical algorithm. Its similarity to existing correspondence based algorithms means that a number of existing techniques for speedup can be incorporated into PCS to improve its performance.
Resumo:
Different approaches to visual object recognition can be divided into two general classes: model-based vs. non model-based schemes. In this paper we establish some limitation on the class of non model-based recognition schemes. We show that every function that is invariant to viewing position of all objects is the trivial (constant) function. It follows that every consistent recognition scheme for recognizing all 3-D objects must in general be model based. The result is extended to recognition schemes that are imperfect (allowed to make mistakes) or restricted to certain classes of objects.
Resumo:
Techniques, suitable for parallel implementation, for robust 2D model-based object recognition in the presence of sensor error are studied. Models and scene data are represented as local geometric features and robust hypothesis of feature matchings and transformations is considered. Bounds on the error in the image feature geometry are assumed constraining possible matchings and transformations. Transformation sampling is introduced as a simple, robust, polynomial-time, and highly parallel method of searching the space of transformations to hypothesize feature matchings. Key to the approach is that error in image feature measurement is explicitly accounted for. A Connection Machine implementation and experiments on real images are presented.
Resumo:
This thesis explores ways to augment a model-based diagnostic program with a learning component, so that it speeds up as it solves problems. Several learning components are proposed, each exploiting a different kind of similarity between diagnostic examples. Through analysis and experiments, we explore the effect each learning component has on the performance of a model-based diagnostic program. We also analyze more abstractly the performance effects of Explanation-Based Generalization, a technology that is used in several of the proposed learning components.
Resumo:
Lee M.H., Model-Based Reasoning: A Principled Approach for Software Engineering, Software - Concepts and Tools,19(4), pp179-189, 2000.