992 resultados para mechanical composition


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Extruded Mg-Zn-RE alloys have been shown to exhibit excellent combinations of yield strength and ductility, but it is not completely clear how adding rare earth metals to Mg-Zn alters the microstructure and affects the mechanical properties. Microstructural changes and the resulting mechanical properties from changes in composition and extrusion temperature have been investigated for Mg-. x Zn-. y RE (. x=2.5 and 5. wt.%, y=0 and 1. wt. %, and RE=Gd and Y) alloys. Adding RE to Mg-Zn increased the strength and reduced the ductility, while increasing the zinc concentration in the Mg-Zn-RE alloys had the reverse effect.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Titanium alloys are widely used in various engineering design application due to its superior material properties. The traditional manufacturing of titanium products is always difficult, time consuming, high material wastage and manufacturing costs. Selective laser melting (SLM), an additive manufacturing technology has widely gained attention due to its capability to produce near net shape components with less production time. In this technical paper,microstructure,chemical composition,tensile properties and hardness are studied for the wrought and additive manufactured SLM cylindrical bar. Microstructure,mechanical properties and hardness were studied in both the longitudinal and transverse directions of the bar to study the effect of orientation. It was found that additive manufactured bar have higher yield strength, ultimate tensile strength and hardness than the wrought bar. For both conventional and SLM test samples, the yield strength, ultimate tensile strength and hardness was found to be high in the transverse direction. The difference in the properties can be attributed to the difference in microstructure as a result of processing conditions. The tensile fracture area was quantified by careful examination of the fracture surfaces in the scanning electron microscope.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Polycrystalline or single-crystal ferroelectric materials present dielectric dispersion in the frequency range 100 MHz-1 GHz that has been attributed to a dispersive ( relaxation-like) mechanism as well as a resonant mechanism. Particularly in 'normal' ferroelectric materials, a dielectric response that is indistinguishable from dispersion or a resonance has been reported. Nevertheless, the reported results are not conclusive enough to distinguish each mechanism clearly. A detailed study of the dielectric dispersion phenomenon has been carried out in PbTiO3-based ferroelectric ceramics, with the composition Pb1-xLaxTiO3 (x = 0.15), over a wide range of temperatures and frequencies, including microwave frequencies. The dielectric response of La-modified lead titanate ferroelectric ceramics, in 'virgin' and poled states, has been investigated in the temperature and frequency ranges 300-450 K and 1 kHz-2 GHz, respectively. The results revealed that the frequency dependence of the dielectric anomalies, depending on the measuring direction with respect to the orientation of the macroscopic polarization, may be described as a general mechanism related to an 'over-damped' resonant process. Applying either a uniaxial stress along the measurement field direction or a poling electric field parallel and/or perpendicular to the measuring direction, a resonant response of the real and imaginary components of the dielectric constant is observed, in contrast to the dispersion behavior obtained in the absence of the stress, for the 'virgin' samples. Both results, resonance and/or dispersion, can be explained by considering a common mechanism involving a resonant response (damped and/or over-damped) which is strongly affected by a ferroelastic-ferroelectric coupling, contributing to the low-field dielectric constant.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

a-C:H films were grown by plasma-enhanced chemical vapor deposition in atmospheres composed by 30 % of acetylene and 70 % of argon. Radiofrequency signal (RF) was supplied to the sample holder to generate the depositing plasmas. Deposition time and pressure were chosen 300 s and 9.5 Pa, respectively, while the excitation power changed from 5 to 125 W. The films were exposed to a post-deposition treatment during 300 s in RF-plasmas (13.56 MHz, 70 W) excited from 13.33 Pa of SF6. Raman and X-ray photoelectron spectroscopy were used to evaluate the microstructure and chemical composition of the films. The thickness was measured by perfilometry. Hardness and friction coefficient were determined from nanoindentation and risk tests, respectively. With increasing power, the film thickness reduced, but a further shrinkage occurred upon the fluorination process. After that, the molecular structure was observed to vary with deposition power. Fluorine was detected in all samples replacing H atoms. Consistently with the elevation in the proportion of C atoms with sp3 hybridization, hardness increased from 2 to 18 GPa. Friction coefficient also increased with power due to the generation of dangling bonds during the fluorination process. © 2012 Springer Science+Business Media, LLC.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The research studies the applicability of two elastoplastic models for the collapse prediction of the lateritic soil profile from Southeastern Brazil. These tropical soils have peculiar geotechnical behavior, due to their mineralogical composition and porous structure coming from intense process of formation. Two elastoplastic models were analyzed: the Barcelona Basic Model (BBM) and another one based on BBM, however developed for tropical soils. Oedometric tests with suction control were performed at three distinct depths of the soil profile. The BBM was not suitable for the upper layer of the soil profile, because BBM considers the compressible behavior of the soil in function of the reduction of the elastoplastic compressibility index with the increase of the matric suction. The model developed for tropical soils showed better suited to the compressible behavior of the soil profile, resulting in good prediction of the collapse potential, mainly by accepting increasing values of the elastoplastic compressibility index of the soil profile with the matric suction rise. © 2013 Springer Science+Business Media Dordrecht.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The physical properties of novel thermoplastic random copolyesters [-(CH2)(n)-COO-/-(CH2)(n)-COO-](x) made of long (n=12) and medium (n=8) chain length -hydroxyfatty esters [HO-(CH2)(n)-COOCH3] derived from bio-based vegetable oil feedstock are described. Poly(-hydroxy tridecanoate/-hydroxy nonanoate) P(-Me13-/-Me9-) random copolyesters (M-n=11,000-18,500 g/mol) with varying molar ratios were examined by TGA, DSC, DMA and tensile analysis, and WAXD. For the whole range of P(-Me13-/-Me9-) compositions, the WAXD data indicated an orthorhombic polyethylene-like crystal packing. Their melting characteristics, determined by DSC, varied with composition suggesting an isomorphic cocrystallization behavior. TGA of the P(-Me13-/-Me9-)s indicated improved thermal stability determined by their molar compositions. The glass transition temperature, investigated by DMA, was also found to vary with composition. The crystallinities of P(-Me13-/-Me9-)s however, were unaffected by the composition. The stiffness (Young's modulus) of these materials was found to be related to their degrees of crystallinity. (c) 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014, 131, 40492.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Amorphous SiC(x)N(y) films have been deposited on (100) Si substrates by RF magnetron sputtering of a SiC target in a variable nitrogen-argon atmosphere. The as-deposited films were submitted to thermal anneling in a furnace under argon atmosphere at 1000 degrees C for 1 hour. Composition and structure of unannealed and annealed samples were investigated by RBS and FTIR. To study the electrical characteristics of SiC(x)N(y) films, Metal-insulator-semiconductor (MIS) structures were fabricated. Elastic modulus and hardness of the films were determined by nanoindentation. The results of these studies showed that nitrogen content and thermal annealing affect the electrical, mechanical and structural properties of SiC(x)N(y) films.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ethnopharmacological relevance: The pharmacological activity of geopropolis collected by stingless bees (important and threatened pollinators), a product widely used in folk medicine by several communities in Brazil, especially in the Northeast Region, needs to be studied. Objective: The aim of this study was to evaluate the antinociceptive activity of Melipona scutellaris geopropolis (stingless bee) using different models of nociception. Material and methods: The antinociceptive activity of the ethanolic extract of geopropolis (EEGP) and fractions was evaluated using writhing induced by acetic acid, formalin test, carrageenan-induced hypernociception, and quantification of IL-1 beta and TNF-alpha. The chemical composition was assessed by quantification of total flavonoids and phenolic compounds. Results: EEGP and its hexane and aqueous fractions showed antinociceptive activity. Both EEGP and its aqueous fraction presented activity in the mechanical inflammatory hypernociception induced by the carrageenan model, an effect mediated by the inhibition of IL-1 beta and TNF-alpha. The chemical composition of EEGP and its hexane and aqueous fractions showed a significant presence of phenolic compounds and absence of flavonoids. Conclusion: Our data indicate that geopropolis is a natural source of bioactive substances with promising antinociceptive activity. (C) 2012 Elsevier Ireland Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The viscoelasticity of mammalian lung is determined by the mechanical properties and structural regulation of the airway smooth muscle (ASM). The exposure to polluted air may deteriorate these properties with harmful consequences to individual health. Formaldehyde (FA) is an important indoor pollutant found among volatile organic compounds. This pollutant permeates through the smooth muscle tissue forming covalent bonds between proteins in the extracellular matrix and intracellular protein structure changing mechanical properties of ASM and inducing asthma symptoms, such as airway hyperresponsiveness, even at low concentrations. In the experimental scenario, the mechanical effect of FA is the stiffening of the tissue, but the mechanism behind this effect is not fully understood. Thus, the aim of this study is to reproduce the mechanical behavior of the ASM, such as contraction and stretching, under FA action or not. For this, it was created a two-dimensional viscoelastic network model based on Voronoi tessellation solved using Runge-Kutta method of fourth order. The equilibrium configuration was reached when the forces in different parts of the network were equal. This model simulates the mechanical behavior of ASM through of a network of dashpots and springs. This dashpot-spring mechanical coupling mimics the composition of the actomyosin machinery of ASM through the contraction of springs to a minimum length. We hypothesized that formation of covalent bonds, due to the FA action, can be represented in the model by a simple change in the elastic constant of the springs, while the action of methacholine (MCh) reduce the equilibrium length of the spring. A sigmoid curve of tension as a function of MCh doses was obtained, showing increased tension when the muscle strip was exposed to FA. Our simulations suggest that FA, at a concentration of 0.1 ppm, can affect the elastic properties of the smooth muscle ¯bers by a factor of 120%. We also analyze the dynamic mechanical properties, observing the viscous and elastic behavior of the network. Finally, the proposed model, although simple, incorporates the phenomenology of both MCh and FA and reproduces experimental results observed with in vitro exposure of smooth muscle to FA. Thus, this new mechanical approach incorporates several well know features of the contractile system of the cells in a tissue level model. The model can also be used in different biological scales.