991 resultados para mathematical functions
Resumo:
Function approximation is a very important task in environments where the computation has to be based on extracting information from data samples in real world processes. So, the development of new mathematical model is a very important activity to guarantee the evolution of the function approximation area. In this sense, we will present the Polynomials Powers of Sigmoid (PPS) as a linear neural network. In this paper, we will introduce one series of practical results for the Polynomials Powers of Sigmoid, where we will show some advantages of the use of the powers of sigmiod functions in relationship the traditional MLP-Backpropagation and Polynomials in functions approximation problems.
Resumo:
In this paper we focus on the application of two mathematical alternative tasks to the teaching and learning of functions with high school students. The tasks were elaborated according to the following methodological approach: (i) Problem Solving and/or mathematics investigation and (ii) a pedagogical proposal, which defends that mathematical knowledge is developed by means of a balance between logic and intuition. We employed a qualitative research approach (characterized as a case study) aimed at analyzing the didactic pedagogical potential of this type of methodology in high school. We found that tasks such as those presented and discussed in this paper provide a more significant learning for the students, allowing a better conceptual understanding, becoming still more powerful when one considers the social-cultural context of the students.
Resumo:
Exact results on particle densities as well as correlators in two models of immobile particles, containing either a single species or else two distinct species, are derived. The models evolve following a descent dynamics through pair annihilation where each particle interacts once at most throughout its entire history. The resulting large number of stationary states leads to a non-vanishing configurational entropy. Our results are established for arbitrary initial conditions and are derived via a generating function method. The single-species model is the dual of the 1D zero-temperature kinetic Ising model with Kimball-Deker-Haake dynamics. In this way, both in finite and semi-infinite chains and also the Bethe lattice can be analysed. The relationship with the random sequential adsorption of dimers and weakly tapped granular materials is discussed.
Resumo:
The research activity carried out during the PhD course was focused on the development of mathematical models of some cognitive processes and their validation by means of data present in literature, with a double aim: i) to achieve a better interpretation and explanation of the great amount of data obtained on these processes from different methodologies (electrophysiological recordings on animals, neuropsychological, psychophysical and neuroimaging studies in humans), ii) to exploit model predictions and results to guide future research and experiments. In particular, the research activity has been focused on two different projects: 1) the first one concerns the development of neural oscillators networks, in order to investigate the mechanisms of synchronization of the neural oscillatory activity during cognitive processes, such as object recognition, memory, language, attention; 2) the second one concerns the mathematical modelling of multisensory integration processes (e.g. visual-acoustic), which occur in several cortical and subcortical regions (in particular in a subcortical structure named Superior Colliculus (SC)), and which are fundamental for orienting motor and attentive responses to external world stimuli. This activity has been realized in collaboration with the Center for Studies and Researches in Cognitive Neuroscience of the University of Bologna (in Cesena) and the Department of Neurobiology and Anatomy of the Wake Forest University School of Medicine (NC, USA). PART 1. Objects representation in a number of cognitive functions, like perception and recognition, foresees distribute processes in different cortical areas. One of the main neurophysiological question concerns how the correlation between these disparate areas is realized, in order to succeed in grouping together the characteristics of the same object (binding problem) and in maintaining segregated the properties belonging to different objects simultaneously present (segmentation problem). Different theories have been proposed to address these questions (Barlow, 1972). One of the most influential theory is the so called “assembly coding”, postulated by Singer (2003), according to which 1) an object is well described by a few fundamental properties, processing in different and distributed cortical areas; 2) the recognition of the object would be realized by means of the simultaneously activation of the cortical areas representing its different features; 3) groups of properties belonging to different objects would be kept separated in the time domain. In Chapter 1.1 and in Chapter 1.2 we present two neural network models for object recognition, based on the “assembly coding” hypothesis. These models are networks of Wilson-Cowan oscillators which exploit: i) two high-level “Gestalt Rules” (the similarity and previous knowledge rules), to realize the functional link between elements of different cortical areas representing properties of the same object (binding problem); 2) the synchronization of the neural oscillatory activity in the γ-band (30-100Hz), to segregate in time the representations of different objects simultaneously present (segmentation problem). These models are able to recognize and reconstruct multiple simultaneous external objects, even in difficult case (some wrong or lacking features, shared features, superimposed noise). In Chapter 1.3 the previous models are extended to realize a semantic memory, in which sensory-motor representations of objects are linked with words. To this aim, the network, previously developed, devoted to the representation of objects as a collection of sensory-motor features, is reciprocally linked with a second network devoted to the representation of words (lexical network) Synapses linking the two networks are trained via a time-dependent Hebbian rule, during a training period in which individual objects are presented together with the corresponding words. Simulation results demonstrate that, during the retrieval phase, the network can deal with the simultaneous presence of objects (from sensory-motor inputs) and words (from linguistic inputs), can correctly associate objects with words and segment objects even in the presence of incomplete information. Moreover, the network can realize some semantic links among words representing objects with some shared features. These results support the idea that semantic memory can be described as an integrated process, whose content is retrieved by the co-activation of different multimodal regions. In perspective, extended versions of this model may be used to test conceptual theories, and to provide a quantitative assessment of existing data (for instance concerning patients with neural deficits). PART 2. The ability of the brain to integrate information from different sensory channels is fundamental to perception of the external world (Stein et al, 1993). It is well documented that a number of extraprimary areas have neurons capable of such a task; one of the best known of these is the superior colliculus (SC). This midbrain structure receives auditory, visual and somatosensory inputs from different subcortical and cortical areas, and is involved in the control of orientation to external events (Wallace et al, 1993). SC neurons respond to each of these sensory inputs separately, but is also capable of integrating them (Stein et al, 1993) so that the response to the combined multisensory stimuli is greater than that to the individual component stimuli (enhancement). This enhancement is proportionately greater if the modality-specific paired stimuli are weaker (the principle of inverse effectiveness). Several studies have shown that the capability of SC neurons to engage in multisensory integration requires inputs from cortex; primarily the anterior ectosylvian sulcus (AES), but also the rostral lateral suprasylvian sulcus (rLS). If these cortical inputs are deactivated the response of SC neurons to cross-modal stimulation is no different from that evoked by the most effective of its individual component stimuli (Jiang et al 2001). This phenomenon can be better understood through mathematical models. The use of mathematical models and neural networks can place the mass of data that has been accumulated about this phenomenon and its underlying circuitry into a coherent theoretical structure. In Chapter 2.1 a simple neural network model of this structure is presented; this model is able to reproduce a large number of SC behaviours like multisensory enhancement, multisensory and unisensory depression, inverse effectiveness. In Chapter 2.2 this model was improved by incorporating more neurophysiological knowledge about the neural circuitry underlying SC multisensory integration, in order to suggest possible physiological mechanisms through which it is effected. This endeavour was realized in collaboration with Professor B.E. Stein and Doctor B. Rowland during the 6 months-period spent at the Department of Neurobiology and Anatomy of the Wake Forest University School of Medicine (NC, USA), within the Marco Polo Project. The model includes four distinct unisensory areas that are devoted to a topological representation of external stimuli. Two of them represent subregions of the AES (i.e., FAES, an auditory area, and AEV, a visual area) and send descending inputs to the ipsilateral SC; the other two represent subcortical areas (one auditory and one visual) projecting ascending inputs to the same SC. Different competitive mechanisms, realized by means of population of interneurons, are used in the model to reproduce the different behaviour of SC neurons in conditions of cortical activation and deactivation. The model, with a single set of parameters, is able to mimic the behaviour of SC multisensory neurons in response to very different stimulus conditions (multisensory enhancement, inverse effectiveness, within- and cross-modal suppression of spatially disparate stimuli), with cortex functional and cortex deactivated, and with a particular type of membrane receptors (NMDA receptors) active or inhibited. All these results agree with the data reported in Jiang et al. (2001) and in Binns and Salt (1996). The model suggests that non-linearities in neural responses and synaptic (excitatory and inhibitory) connections can explain the fundamental aspects of multisensory integration, and provides a biologically plausible hypothesis about the underlying circuitry.
Resumo:
Human HeLa cells expressing mouse connexin30 were used to study the electrical properties of gap junction channel substates. Experiments were performed on cell pairs using a dual voltage-clamp method. Single-channel currents revealed discrete levels attributable to a main state, a residual state, and five substates interposed, suggesting the operation of six subgates provided by the six connexins of a gap junction hemichannel. Substate conductances, gamma(j,substate), were unevenly distributed between the main-state and the residual-state conductance (gamma(j,main state) = 141 pS, gamma(j,residual state) = 21 pS). Activation of the first subgate reduced the channel conductance by approximately 30%, and activation of subsequent subgates resulted in conductance decrements of 10-15% each. Current transitions between the states were fast (<2 ms). Substate events were usually demarcated by transitions from and back to the main state; transitions among substates were rare. Hence, subgates are recruited simultaneously rather than sequentially. The incidence of substate events was larger at larger gradients of V(j). Frequency and duration of substate events increased with increasing number of synchronously activated subgates. Our mathematical model, which describes the operation of gap junction channels, was expanded to include channel substates. Based on the established V(j)-sensitivity of gamma(j,main state) and gamma(j,residual state), the simulation yielded unique functions gamma(j,substate) = f(V(j)) for each substate. Hence, the spacing of subconductance levels between the channel main state and residual state were uneven and characteristic for each V(j).
Resumo:
Pronounced improvements in executive functions (EF) during preschool years have been documented in cross-sectional studies. However, longitudinal evidence on EF development during the transition to school and predictive associations between early EF and later school achievement are still scarce. This study examined developmental changes in EF across three time-points, the predictive value of EF for mathematical, reading and spelling skills and explored children's specific academic attainment as a function of early EF. Participants were 323 children following regular education; 160 children were enrolled in prekindergarten (younger cohort: 69 months) and 163 children in kindergarten (older cohort: 78.4 months) at the first assessment. Various tasks of EF were administered three times with an interval of one year each. Mathematical, reading and spelling skills were measured at the last assessment. Individual background characteristics such as vocabulary, non-verbal intelligence and socioeconomic status were included as control variables. In both cohorts, changes in EF were substantial; improvements in EF, however, were larger in preschoolers than school-aged children. EF assessed in preschool accounted for substantial variability in mathematical, reading and spelling achievement two years later, with low EF being especially associated with significant academic disadvantages in early school years. Given that EF continue to develop from preschool into primary school years and that starting with low EF is associated with lower school achievement, EF may be considered as a marker or risk for academic disabilities.
Resumo:
We prove that any isotropic positive definite function on the sphere can be written as the spherical self-convolution of an isotropic real-valued function. It is known that isotropic positive definite functions on d-dimensional Euclidean space admit a continuous derivative of order [(d − 1)/2]. We show that the same holds true for isotropic positive definite functions on spheres and prove that this result is optimal for all odd dimensions.
Resumo:
In this paper we prove that if U is an open subset of a metrizable locally convex space E of infinite dimension, the space H(U) of all holomorphic functions on U, endowed with the Nachbin–Coeuré topology τδ, is not metrizable. Our result can be applied to get that, for all usual topologies, H(U) is metrizable if and only if E has finite dimension. RESUMEN. En este artículo se demuestra que si U es un abierto en un espacio E localmente convexo metrizable de dimensión infinita y H(U) es el espacio de funciones holomorfas en U, entonces la topología de Nachbin-Coeuré en H(U) no es metrizable. Este resultado se utiliza para demostrar que las topologías habituales en H(U) son metrizables si y sólo si E tiene dimensión finita.
Resumo:
Let E be an infinite dimensional complex Banach space. We prove the existence of an infinitely generated algebra, an infinite dimensional closed subspace and a dense subspace of entire functions on E whose non-zero elements are functions of unbounded type. We also show that the τδ topology on the space of all holomorphic functions cannot be obtained as a countable inductive limit of Fr´echet spaces. RESUMEN. Sea E un espacio de Banach complejo de dimensión infinita y sea H(E) el espacio de funciones holomorfas definidas en E. En el artículo se demuestra la existencia de un álgebra infinitamente generada en H(E), un subespacio vectorial en H(E) cerrado de dimensión infinita y un subespacio denso en H(E) cuyos elementos no nulos son funciones de tipo no acotado. También se demuestra que el espacio de funciones holomorfas con la topología ? no es un límite inductivo numberable de espacios de Fréchet.
Resumo:
We characterize the region of meromorphic continuation of an analytic function ff in terms of the geometric rate of convergence on a compact set of sequences of multi-point rational interpolants of ff. The rational approximants have a bounded number of poles and the distribution of interpolation points is arbitrary.
Resumo:
Soil tomography and morphological functions built over Minkowski functionals were used to describe the impact on pore structure of two soil management practices in a Mediterranean vineyard. Soil structure controls important physical and biological processes in soil–plant–microbial systems. Those processes are dominated by the geometry of soil pore structure, and a correct model of this geometry is critical for understanding them. Soil tomography has been shown to provide rich three-dimensional digital information on soil pore geometry. Recently, mathematical morphological techniques have been proposed as powerful tools to analyze and quantify the geometrical features of porous media. Minkowski functionals and morphological functions built over Minkowski functionals provide computationally efficient means to measure four fundamental geometrical features of three-dimensional geometrical objects, that is, volume, boundary surface, mean boundary surface curvature, and connectivity. We used the threshold and the dilation and erosion of three-dimensional images to generate morphological functions and explore the evolution of Minkowski functionals as the threshold and as the degree of dilation and erosion changes. We analyzed the three-dimensional geometry of soil pore space with X-ray computed tomography (CT) of intact soil columns from a Spanish Mediterranean vineyard by using two different management practices (conventional tillage versus permanent cover crop of resident vegetation). Our results suggested that morphological functions built over Minkowski functionals provide promising tools to characterize soil macropore structure and that the evolution of morphological features with dilation and erosion is more informative as an indicator of structure than moving threshold for both soil managements studied.
Resumo:
During the last few decades, new imaging techniques like X-ray computed tomography have made available rich and detailed information of the spatial arrangement of soil constituents, usually referred to as soil structure. Mathematical morphology provides a plethora of mathematical techniques to analyze and parameterize the geometry of soil structure. They provide a guide to design the process from image analysis to the generation of synthetic models of soil structure in order to investigate key features of flow and transport phenomena in soil. In this work, we explore the ability of morphological functions built over Minkowski functionals with parallel sets of the pore space to characterize and quantify pore space geometry of columns of intact soil. These morphological functions seem to discriminate the effects on soil pore space geometry of contrasting management practices in a Mediterranean vineyard, and they provide the first step toward identifying the statistical significance of the observed differences.