884 resultados para maternally-mediated genotype effect


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Severe long-term alcohol misuse leads to localized brain damage that is prominent in superior frontal cortex but less so in other cortical areas e.g. primary motor. Alcohol dependence is also associated with several genetic markers. GABAA receptor expression differs selectively between alcoholics and controls in a manner that conforms to the pathology, whereas glutamate receptors are much less regionally variable in these subjects. We determined whether genotype differentiated the pharmacology of glutamate-NMDA receptors and the expression GABAA receptor subunits transcripts in a locally appropriate way so as to influence the severity of alcohol-induced brain damage.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The cellular changes during ageing are incompletely understood yet immune system dysfunction is implicated in the age-related decline in health. The acquired immune system shows a functional decline in ability to respond to new pathogens whereas serum levels of cytokines are elevated with age. Despite these age-associated increases in circulating cytokines, the function of aged macrophages is decreased. Pathogen-associated molecular pattern receptors such as Toll-like receptors (TLRs) are vital in the response of macrophages to pathological stimuli. Here we review the evidence for defective TLR signalling in normal ageing. Gene transcription, protein expression and cell surface expression of members of the TLR family of receptors and co-effector molecules do not show a consistent age-dependent change across model systems. However, there is evidence for impaired downstream signalling events, including inhibition of positive and activation of negative modulators of TLR induced signalling events. In this paper we hypothesize that despite a poor inflammatory response via TLR activation, the ineffective clearance of pathogens by macrophages increases the duration of their activation and contributes to perpetuation of inflammatory responses and ageing.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The use of cationic liposomes as experimental adjuvants for subunit peptide of protein vaccines is well documented. Recently the cationic liposome CAF01, composed of dimethyldioctadecylammonium (DDA) and trehalose dibehenate (TDB), has entered Phase I clinical trials for use in a tuberculosis (TB) vaccine. CAF01 liposomes are a heterogeneous population with a mean vesicle size of 500 nm; a strong retention of antigen at the injection site and a Th1-biassed immune response are noted. The purpose of this study was to investigate whether CAF01 liposomes of significantly different vesicle sizes exhibited altered pharmacokinetics in vivo and cellular uptake with activation in vitro. Furthermore, the immune response against the TB antigen Ag85B-ESAT-6 was followed when various sized CAF01 liposomes were used as vaccine adjuvants. The results showed no differences in vaccine (liposome or antigen) draining from the injection site, however, significant differences in the movement of liposomes to the popliteal lymph node were noted. Liposome uptake by THP-1 vitamin D3 stimulated macrophage-like cells did not show a liposome size-dependent pattern of uptake. Finally, whilst there were no significant differences in the IgG1/2 regardless of the liposome size used as a delivery vehicle for Ag85B-ESAT-6, vesicle size has a size dependent effect on cell proliferation and IL-10 production with larger liposomes (in excess of 2 µm) promoting the highest proliferation and lowest IL-10 responses, yet vesicles of ~500 nm promoting higher IFN-? cytokine production from splenocytes and higher IL-1ß at the site of injection.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Taste acuity for the bitter taste of 6-n-propylthiouracil (PROP) is a heritable trait. Some individuals perceive concentrated levels of PROP to taste extremely bitter (supertasters) or moderately bitter (medium tasters), whereas others detect only a mild taste or none at all (non-tasters). Heightened PROP acuity has been reported to be associated with greater acuity for a variety of compounds found in ordinary foods, although there are some inconsistent findings. The extent to which these compounds are perceived may affect food likes/dislikes and dietary intake. The majority of studies have tended to measure food likes and intake using questionnaires or laboratory preparations of a single taste quality. The present study used food diaries and sensory responses to real foods to be better able to generalise to real eating situations. There was no substantial evidence that genetically mediated taste acuity for PROP had a direct influence on food likes/dislikes or intake, although there was evidence that dietary restraint could have influenced these findings among the female samples. However; investigation of PROP tasting among individuals with coronary heart disease (CHD) and a control group suggested that PROP acuity could function as a genetic taste marker for heart disease and potentially other diet-related conditions. CHD was associated with decreased PROP acuity among men. This is consistent with the findings that decreased PROP acuity tended to be associated with increased likelihood to be a smoker and higher body mass index. It is concluded that there is not a simple and direct relationship between PROP tasting ability and food choice. An interaction between PROP acuity and other mediating factors may be involved in a more complex model of food choice. The evidence that PROP taste acuity may function as a genetic taste marker for coronary heart disease could have wide implications for understanding the aetiology, and ultimately the prevention, of diet-related disease.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Hypertension, a major risk factor in the cardiovascular system, is characterized by an increase in the arterial blood pressure. High dietary sodium is linked to multiple cardiovascular disorders including hypertension. Salt sensitivity, a measure of how the blood pressure responds to salt intake is observed in more than 50% of the hypertension cases. Nitric Oxide (NO), as an endogenous vasodilator serves many important biological roles in the cardiovascular physiology including blood pressure regulation. The physiological concentrations for NO bioactivity are reported to be in 0-500 nM range. Notably, the vascular response to NO is highly regulated within a small concentration spectrum. Hence, much uncertainty surrounds how NO modulates diverse signaling mechanisms to initiate vascular relaxation and alleviate hypertension. Regulating the availability of NO in the vasculature has demonstrated vasoprotective effects. In addition, modulating the NO release by different means has proved to restore endothelial function. In this study we addressed parameters that regulated NO release in the vasculature, in physiology and pathophysiology such as salt sensitive hypertension. We showed that, in the rat mesenteric arterioles, Ca2+ induced rapid relaxation (time constants 20.8 ± 2.2 sec) followed with a much slower constriction after subsequent removal of the stimulus (time constants 104.8 ± 10.0 sec). An interesting observation was that a fourfold increase in the Ca 2+ frequency improved the efficacy of arteriolar relaxation by 61.1%. Our results suggested that, Ca2+ frequency-dependent transient release of NO from the endothelium carried encoded information; which could be translated into different steady state vascular tone. Further, Agmatine, a metabolite of L-arginine, as a ligand, was observed to relax the mesenteric arterioles. These relaxations were NO-dependent and occurred via &agr;-2 receptor activity. The observed potency of agmatine (EC50, 138.7 ± 12.1 ± μM; n=22), was 40 fold higher than L-arginine itself (EC50, 18.3 ± 1.3 mM; n = 5). This suggested us to propose alternative parallel mechanism for L-arginine mediated vascular relaxation via arginine decarboxylase activity. In addition, the biomechanics of rat mesentery is important in regulation of vascular tone. We developed 2D finite element models that described the vascular mechanics of rat mesentery. With an inverse estimation approach, we identified the elasticity parameters characterizing alterations in normotensive and hypertensive Dahl rats. Our efforts were towards guiding current studies that optimized cardiovascular intervention and assisted in the development of new therapeutic strategies. These observations may have significant implications towards alternatives to present methods for NO delivery as a therapeutic target. Our work shall prove to be beneficial in assisting the delivery of NO in the vasculature thus minimizing the cardiovascular risk in handling abnormalities, such as hypertension.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The present study was carried out to evaluate the effect of different levels of garlic extract supplemented in milk on growth rate, haematology and cell–mediated immune response of Markhoz newborn goat kids. Twenty four newborn goat kids (aged 7+/-3days) were randomly assigned to four groups. The groups consisted of control (received milk without garlic extract), T1, T2 and T3 which received milk supplemented with 62.5, 125 and 250 mg aqueous garlic extract per kg live weight per day for 42 days, respectively. Body weights were measured weekly throughout the experimental period. At day 42, about 10 ml blood samples were collected from each kid via the jugular vein for haematological study. Cell–mediated immune response was evaluated through double skin thickness after intradermal injection of phyto-hematogglutinin (PHA) at day 21 and 42. Total gain was significantly higher for kids in T3 (P<0.05) compared with the control group. Average daily gain (ADG) in T3 group in week 4–5 was higher (P<0.05). Significant differences in globulin (P<0.01), hemoglobin (Hb; P<0.001), hematocrit (PCV; P<0.001), erythrocyte (RBC; P<0.001), neutrophil (P<0.001), lymphocyte (P<0.001) and leukocyte (WBC; P<0.001) were observed among groups. Hb, PCV, RBC, lymphocytes and WBC were higher in kids given garlic extract supplementation. There was a significant difference of double skin thickness among the groups at day 42 (P<0.01). In conclusion, this study indicated that milk supplemented with aqueous garlic extract improved growth rate and immunity of newborn goat kids.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Hypertension, a major risk factor in the cardiovascular system, is characterized by an increase in the arterial blood pressure. High dietary sodium is linked to multiple cardiovascular disorders including hypertension. Salt sensitivity, a measure of how the blood pressure responds to salt intake is observed in more than 50% of the hypertension cases. Nitric Oxide (NO), as an endogenous vasodilator serves many important biological roles in the cardiovascular physiology including blood pressure regulation. The physiological concentrations for NO bioactivity are reported to be in 0-500 nM range. Notably, the vascular response to NO is highly regulated within a small concentration spectrum. Hence, much uncertainty surrounds how NO modulates diverse signaling mechanisms to initiate vascular relaxation and alleviate hypertension. Regulating the availability of NO in the vasculature has demonstrated vasoprotective effects. In addition, modulating the NO release by different means has proved to restore endothelial function. In this study we addressed parameters that regulated NO release in the vasculature, in physiology and pathophysiology such as salt sensitive hypertension. We showed that, in the rat mesenteric arterioles, Ca2+ induced rapid relaxation (time constants 20.8 ± 2.2 sec) followed with a much slower constriction after subsequent removal of the stimulus (time constants 104.8 ± 10.0 sec). An interesting observation was that a fourfold increase in the Ca2+ frequency improved the efficacy of arteriolar relaxation by 61.1%. Our results suggested that, Ca2+ frequency-dependent transient release of NO from the endothelium carried encoded information; which could be translated into different steady state vascular tone. Further, Agmatine, a metabolite of L-arginine, as a ligand, was observed to relax the mesenteric arterioles. These relaxations were NO-dependent and occurred via α-2 receptor activity. The observed potency of agmatine (EC50, 138.7 ± 12.1 µM; n=22), was 40 fold higher than L-arginine itself (EC50, 18.3 ± 1.3 mM; n = 5). This suggested us to propose alternative parallel mechanism for L-arginine mediated vascular relaxation via arginine decarboxylase activity. In addition, the biomechanics of rat mesentery is important in regulation of vascular tone. We developed 2D finite element models that described the vascular mechanics of rat mesentery. With an inverse estimation approach, we identified the elasticity parameters characterizing alterations in normotensive and hypertensive Dahl rats. Our efforts were towards guiding current studies that optimized cardiovascular intervention and assisted in the development of new therapeutic strategies. These observations may have significant implications towards alternatives to present methods for NO delivery as a therapeutic target. Our work shall prove to be beneficial in assisting the delivery of NO in the vasculature thus minimizing the cardiovascular risk in handling abnormalities, such as hypertension.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Tissue damage resulting from the extracellular production of HOCl (hypochlorous acid) by the MPO (myeloperoxidase)-hydrogen peroxide-chloride system of activated phagocytes is implicated as a key event in the progression of a number of human inflammatory diseases. Consequently, there is considerable interest in the development of therapeutically useful MPO inhibitors. Nitroxides are well established antioxidant compounds of low toxicity that can attenuate oxidative damage in animal models of inflammatory disease. They are believed to exert protective effects principally by acting as superoxide dismutase mimetics or radical scavengers. However, we show here that nitroxides can also potently inhibit MPO-mediated HOCl production, with the nitroxide 4-aminoTEMPO inhibiting HOCl production by MPO and by neutrophils with IC50 values of approx. 1 and 6 μM respectively. Structure–activity relationships were determined for a range of aliphatic and aromatic nitroxides, and inhibition of oxidative damage to two biologically-important protein targets (albumin and perlecan) are demonstrated. Inhibition was shown to involve one-electron oxidation of the nitroxides by the compound I form of MPO and accumulation of compound II. Haem destruction was also observed with some nitroxides. Inhibition of neutrophil HOCl production by nitroxides was antagonized by neutrophil-derived superoxide, with this attributed to superoxide-mediated reduction of compound II. This effect was marginal with 4-aminoTEMPO, probably due to the efficient superoxide dismutase-mimetic activity of this nitroxide. Overall, these data indicate that nitroxides have considerable promise as therapeutic agents for the inhibition of MPO-mediated damage in inflammatory diseases.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Denaturation of extracellular matrix proteins exposes cryptic binding sites. It is hypothesized that binding of cell adhesion receptors to these cryptic binding sites regulates cellular behaviour during tissue repair and regeneration. To test this hypothesis, we quantify the adhesion of pre-osteoblastic cells to native (Col) and partially-denatured (pdCol) collagen I using single-cell force spectroscopy. During early stages of cell attachment (≤180 s) pre-osteoblasts (MC3T3-E1) adhered significantly stronger to pdCol compared to Col. RGD (Arg-Gly-Asp)-containing peptides suppressed this elevated cell adhesion. We show that the RGD-binding α5β1- and αv-integrins mediated pre-osteoblast adhesion to pdCol, but not to Col. On pdCol pre-osteoblasts had a higher focal adhesion kinase tyrosine-phosphorylation level that correlated with enhanced spreading and motility. Moreover, pre-osteoblasts cultured on pdCol showed a pronounced matrix mineralization activity. Our data suggest that partially-denatured collagen exposes RGD-motifs that trigger binding of α5β1- and αv-integrins. These integrins initiate cellular processes that stimulate osteoblast adhesion, spreading, motility and differentiation. Taken together, these quantitative insights reveal an approach for the development of alternative collagen I- based surfaces for tissue engineering applications.