965 resultados para materials control


Relevância:

30.00% 30.00%

Publicador:

Resumo:

OBJECTIVE: (1) To quantify wear of two different denture tooth materials in vivo with two study designs, (2) to relate tooth variables to vertical loss. METHODS: Two different denture tooth materials had been used (experimental material=test; DCL=control). In study 1 (split-mouth, 6 test centers) 60 subjects received complete dentures, in study 2 (two-arm, 1 test center) 29 subjects. In study 1 the mandibular dentures were supported by implants in 33% of the subjects, in study 2 only in 3% of the subjects. Impressions of the dentures were taken and poured with improved stone at baseline and after 6, 12, 18 and 24 months. Each operator evaluated the wear subjectively. Wear analysis was carried out with a laser scanning device. Maximal vertical loss of the attrition zones was calculated for each tooth cusp and tooth. A mixed linear model was used to statistically analyse the logarithmically transformed wear data. RESULTS: Due to drop-outs and unmatchable casts, only 47 subjects of study 1 and 14 of study 2 completed the 2-year recall. Overall, 75% of all teeth present could be analysed. There was no statistically difference in the overall wear between the test and control material for either study 1 or study 2. The relative increase in wear over time was similar in both study designs. However, a strong subject effect and center effect were observed. The fixed factors included in the model (time, tooth, center, etc.) accounted for 43% of the variability, whereas the random subject effect accounted for another 30% of the variability, leaving about 28% of unexplained variability. More wear was consistently recorded in the maxillary teeth compared to the mandibular teeth and in the first molar teeth compared to the premolar teeth and the second molars. Likewise, the supporting cusps showed more wear than the non-supporting cusps. The amount of wear did not depend on whether or not the lower dentures were supported by implants. The subjective wear was correct in about 67% of the cases if it is postulated that a wear difference of 100μm should be subjectively detectable. SIGNIFICANCE: The clinical wear of denture teeth is highly variable with a strong patient effect. More wear can be expected in maxillary denture teeth compared to mandibular teeth, first molars compared to premolars and supported cusps compared to non-supported cusps. Laboratory data on the wear of denture tooth materials may not be confirmed in well-structured clinical trials probably due to the large inter-individual variability.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Six subject areas prompted the broad field of inquiry of this mission-oriented dust control and surface improvement project for unpaved roads: • DUST--Hundreds of thousands of tons of dust are created annually by vehicles on Iowa's 70,000 miles of unpaved roads and streets. Such dust is often regarded as a nuisance by Iowa's highway engineers. • REGULATIONS--Establishment of "fugitive dust" regulations by the Iowa DEQ in 1971 has created debates, conferences, legal opinions, financial responsibilities, and limited compromises regarding "reasonable precaution" and "ordinary travel," both terms being undefined judgment factors. • THE PUBLIC--Increased awareness by the public that regulations regarding dust do in fact exist creates a discord of telephone calls, petitions, and increasing numbers of legal citations. Both engineers and politicians are frustrated into allowing either the courts or regulatory agencies to resolve what is basically a professional engineering responsibility. • COST--Economics seldom appear as a tenet of regulatory strategies, and in the case of "fugitive dust," four-way struggles often occur between the highway professions, political bodies, regulatory agencies, and the general public as to who is responsible, what can be done, how much it will cost, or why it wasn't done yesterday. • CONFUSION--The engineer lacks authority, and guidelines and specifications to design and construct a low-cost surf acing system are nebulous, i.e., construct something between the present crushed stone/gravel surface and a high-type pavement. • SOLUTION--The engineer must demonstrate that dust control and surface improvement may be engineered at a reasonable cost to the public, so that a higher degree of regulatory responsibility can be vested in engineering solutions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Transverse joints are placed in portland cement concrete pavements to control the development of random cracking due to stresses induced by moisture and thermal gradients and restrained slab movement. These joints are strengthened through the use of load transfer devices, typically dowel bars, designed to transfer load across the joint from one pavement slab to the next. Epoxy coated steel bars are the materials of choice at the present time, but have experienced some difficulties with resistance to corrosion from deicing salts. The research project investigated the use of alternative materials, dowel size and spacing to determine the benefits and limitations of each material. In this project two types of fiber composite materials, stainless steel solid dowels and epoxy coated dowels were tested for five years in side by side installation in a portion of U.S. 65 near Des Moines, Iowa, between 1997 and 2002. The work was directed at analyzing the load transfer characteristics of 8-in. vs. 12-in. spacing of the dowels and the alternative dowel materials, fiber composite (1.5- and 1.88-in. diameter) and stainless steel (1.5-in. diameter), compared to typical 1.5-in. diameter epoxy-coated steel dowels placed on 12-in. spacing. Data were collected biannually within each series of joints and variables in terms of load transfer in each lane (outer wheel path), visual distress, joint openings, and faulting in each wheel path. After five years of performance the following observations were made from the data collected. Each of the dowel materials is performing equally in terms of load transfer, joint movement and faulting. Stainless steel dowels are providing load transfer performance equal to or greater than epoxy-coated steel dowels at the end of five years. Fiber reinforced polymer (FRP) dowels of the sizes and materials tested should be spaced no greater than 8 in. apart to achieve comparable performance to epoxy coated dowels. No evidence of deterioration due to road salts was identified on any of the products tested. The relatively high cost of stainless steel solid and FRP dowels was a limitation at the time of this study conclusion. Work is continuing with the subject materials in laboratory studies to determine the proper shape, spacing, chemical composition and testing specification to make the FRP and stainless (clad or solid) dowels a viable alternative joint load transfer material for long lasting portland cement concrete pavements.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The routine maintenance along Iowa's highways and roadways during the summer growing season is a time consuming and costly endeavor. Trimming around guardrail posts and delineator posts is especially costly due to the handwork required. Trimming costs account for approximately 50% of the shoulder mowing costs according to expense figures obtained from the Iowa Department of Transportation (DOT), Office of Maintenance. The FY 2001 statewide trimming costs for the Iowa DOT was approximately $430,000 ($305,000 labor, $125,000 equipment and materials). This product would be required to perform well for 9-21 years, on average, in order to recoup the cost of installation. This includes the durability of the product, but not the cost of repair due to traffic damage, snowplow and wing damage, or damage caused by mowing operations. Maintenance costs associated with vegetation creep over the mats and repair costs would extend the required service life. As a result of resource realignment, the Iowa DOT roadside maintenance policy, for FY 2003 and the future, will be to eliminate trimming around delineator posts unless the reflector is obstructed. This policy change will effectively eliminate the need for weed control mats due to the significant reduction in trimming. The use of the weed control mats could be justified in areas that are dangerous to maintenance workers such as guardrail installations in high traffic areas. Because the delineator posts are further from the edge of the traveled roadway, there is a reduced risk to the maintenance workforce while hand trimming. Because the DuroTrim Vegetation Control Mats appear to have performed adequately in the field trial, they could be considered for use, where safety conditions warrant. That use should be limited, however, due to the considerable initial cost and changes in Iowa DOT roadside maintenance policy. Application should be limited to instances where the use of the DuroTrim Vegetation Control Mats would have a significant impact on the safety of the roadside maintenance workers. The cost savings, due to the elimination of the trimming and mowing alone, is not enough to justify their use in most situations at their current cost. The test sections will continue to be monitored periodically so that approximate service life can be determined.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Effective winter maintenance makes use of freezing-point-depressant chemicals (also known as ice-control products) to prevent the formation of the bond between snow and ice and the highway pavement. In performing such winter maintenance, the selection of appropriate ice-control products for the bond prevention task involves consideration of a number of factors, as indicated in Nixon and Williams (2001). The factors are in essence performance measurements of the ice-control products, and as such can be easily incorporated into a specification document to allow for selection of the best ice-control products for a given agency to use in its winter maintenance activities. Once performance measures for de-icing or anti-icing chemicals have been specified, this allows the creation of a quality control program for the acceptance of those chemicals. This study presents a series of performance measurement tests for ice-control products, and discusses the role that they can play in such a quality control program. Some tests are simple and rapid enough that they can be performed on every load of icecontrol products received, while for others, a sampling technique must be used. An appropriate sampling technique is presented. Further, each test is categorized as to whether it should be applied to every load of ice-control products or on a sampling basis. The study includes a detailed literature review that considers the performance of ice-control products in three areas: temperature related performance, product consistency, and negative side effects. The negative side effects are further broken down into three areas, namely operational side effects (such as chemical slipperiness), environmental side effects, and infrastructural side effects (such as corrosion of vehicles and damage to concrete). The review indicated that in the area of side effects the field performance of ice-control products is currently so difficult to model in the laboratory that no particular specification tests can be recommended at this time. A study of the impact of ice-control products on concrete was performed by Professor Wang of Iowa State University as a sub-contract to this study, and has been presented to the Iowa Highway Research Board prior to this report.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The issue of corrosion of winter maintenance equipment is becoming of greater concern because of the increased use of liquid solutions of ice control chemicals, as opposed to their application in solid form. Being in liquid form, the ice control chemicals can more easily penetrate into the nooks and crannies on equipment and avoid being cleansed from the vehicle. Given this enhanced corrosive ability, methods must be found to minimize corrosion. The methods may include coatings, additives, cleansing techniques, other methods, and may also include doing nothing, and accepting a reduced equipment lifetime as a valid (perhaps) trade off with the enhanced benefits of using liquid ice control chemicals. In reality, some combination of these methods may prove to be optimal. Whatever solutions are selected, they must be relatively cheap and durable. The latter point is critical because of the environment in which maintenance trucks operate, in which scrapes, scratches and dents are facts of life. Protection methods that are not robust simply will not work. The purpose of this study is to determine how corrosion occurs on maintenance trucks, to find methods that would minimize the major corrosion mechanisms, and to

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A specification for contractor moisture quality control (QC) in roadway embankment construction has been in use for approximately 10 years in Iowa on about 190 projects. The use of this QC specification and the development of the soils certification program for the Iowa Department of Transportation (DOT) originated from Iowa Highway Research Board (IHRB) embankment quality research projects. Since this research, the Iowa DOT has applied compaction with moisture control on most embankment work under pavements. This study set out to independently evaluate the actual quality of compaction using the current specifications. Results show that Proctor tests conducted by Iowa State University (ISU) using representative material obtained from each test section where field testing was conducted had optimum moisture contents and maximum dry densities that are different from what was selected by the Iowa DOT for QC/quality assurance (QA) testing. Comparisons between the measured and selected values showed a standard error of 2.9 lb/ft3 for maximum dry density and 2.1% for optimum moisture content. The difference in optimum moisture content was as high as 4% and the difference in maximum dry density was as high as 6.5 lb/ft3 . The difference at most test locations, however, were within the allowable variation suggested in AASHTO T 99 for test results between different laboratories. The ISU testing results showed higher rates of data outside of the target limits specified based on the available contractor QC data for cohesive materials. Also, during construction observations, wet fill materials were often observed. Several test points indicated that materials were placed and accepted at wet of the target moisture contents. The statistical analysis results indicate that the results obtained from this study showed improvements over results from previous embankment quality research projects (TR-401 Phases I through III and TR-492) in terms of the percentage of data that fell within the specification limits. Although there was evidence of improvement, QC/QA results are not consistently meeting the target limits/values. Recommendations are provided in this report for Iowa DOT consideration with three proposed options for improvements to the current specifications. Option 1 provides enhancements to current specifications in terms of material-dependent control limits, training, sampling, and process control. Option 2 addresses development of alternative specifications that incorporate dynamic cone penetrometer or light weight deflectometer testing into QC/QA. Option 3 addresses incorporating calibrated intelligent compaction measurements into QC/QA.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objective: A comparative study is made of the histological effects of silver amalgam versus compomer (Dyract®) 90 days after placement as retrograde filling materials in experimental animals. Method: Six Beagle dogs were used, with total pulpectomy and orthograde material filling followed by periapical surgery of the 6 upper and 6 lower incisors (for a total of 72 teeth). Thirty-six teeth corresponded to the right side and were filled with the control material (silver amalgam), while the 36 teeth on the left side were filled with the compomer study material (Dyract®). After three months the animals were sacrificed and the histological study was carried out, with evaluation of bone formation, inflammation, and the tissue in contact with the filler material. The results obtained were subjected to a descriptive and comparative statistical analysis (chi-square test). Results: The samples retrogradely filled with compomer showed significantly greater percentage inflammation (76.19% versus 26.66% in the control group). On the other hand, a large proportion of samples with root cement growth were found in the compomer group. Filler material expulsion was also significantly more common when compomer was used. Conclusions: the comparative study of the histological findings showed greater inflammation but also greater root cement growth in the compomer group versus the controls

Relevância:

30.00% 30.00%

Publicador:

Resumo:

[Summary] 2. Roles of quality control in the pharmaceutical and biopharmaceutical industries. - 2.1. Pharmaceutical industry. - 2.2. Biopharmaceutical industry. - 2.3. Policy and regulatory. - 2.3.1. The US Food and Drug Administration (FDA). - 2.3.2. The European Medicine Agency (EMEA). - 2.3.3. The Japanese Ministry of Work, Labor and Welfare (MHLW). - 2.3.4. The Swiss Agency for Therapeutic Products (Swissmedic). - 2.3.5. The International Conference on Harmonization (ICH). - - 3. Types of testing. - 3.1. Microbiological purity tests. - 3.2. Physiochemical tests. - 3.3. Critical to quality steps. - 3.3.1. API starting materials and excipients. - 3.3.2. Intermediates. - 3.3.3. APIs (drug substances) and final drug product. - 3.3.4. Primary and secondary packaging materials fro drug products. - - 4. Manufacturing cost and quality control. - 4.1.1. Pharmaceutical manufacturing cost breakdown. - 4.1.2. Biopharmaceutical manufacturing cost breakdown. - 4.2. Batch failure / rejection / rework / recalls. - - 5. Future trends in the quality control of pharmaceuticals and biopharmaceuticals. - 5.1. Rapid and real time testing. - 5.1.1. Physio-chemicals testing. - 5.1.2. Rapid microbiology methods

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Joints intended for welding frequently show variations in geometry and position, for which it is unfortunately not possible to apply a single set of operating parameters to ensure constant quality. The cause of this difficulty lies in a number of factors, including inaccurate joint preparation and joint fit up, tack welds, as well as thermal distortion of the workpiece. In plasma arc keyhole welding of butt joints, deviations in the gap width may cause weld defects such as an incomplete weld bead, excessive penetration and burn through. Manual adjustment of welding parameters to compensate for variations in the gap width is very difficult, and unsatisfactory weld quality is often obtained. In this study a control system for plasma arc keyhole welding has been developed and used to study the effects of the real time control of welding parameters on gap tolerance during welding of austenitic stainless steel AISI 304L. The welding tests demonstrated the beneficial effect of real time control on weld quality. Compared with welding using constant parameters, the maximum tolerable gap width with an acceptable weld quality was 47% higher when using the real time controlled parameters for a plate thickness of 5 mm. In addition, burn through occurred with significantly larger gap widths when parameters were controlled in real time. Increased gap tolerance enables joints to be prepared and fit up less accurately, saving time and preparation costs for welding. In addition to the control system, a novel technique for back face monitoring is described in this study. The test results showed that the technique could be successfully applied for penetration monitoring when welding non magnetic materials. The results also imply that it is possible to measure the dimensions of the plasma efflux or weld root, and use this information in a feedback control system and, thus, maintain the required weld quality.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Persistent luminescence materials can store energy from solar radiation or artificial lighting and release it over a period of several hours without a continuous excitation source. These materials are widely used to improve human safety in emergency and traffic signalization. They can also be utilized in novel applications including solar cells, medical diagnostics, radiation detectors and structural damage sensors. The development of these materials is currently based on methods based on trial and error. The tailoring of new materials is also hindered by the lack of knowledge on the role of their intrinsic and extrinsic lattice defects in the appropriate mechanisms. The goal of this work was to clarify the persistent luminescence mechanisms by combining ab initio density functional theory (DFT) calculations with selected experimental methods. The DFT approach enables a full control of both the nature of the defects and their locations in the host lattice. The materials studied in the present work, the distrontium magnesium disilicate (Sr2MgSi2O7) and strontium aluminate (SrAl2O4) are among the most efficient persistent luminescence hosts when doped with divalent europium Eu2+ and co-doped with trivalent rare earth ions R3+ (R: Y, La-Nd, Sm, Gd-Lu). The polycrystalline materials were prepared with the solid state method and their structural and phase purity was confirmed by X-ray powder diffraction. Their local crystal structure was studied by high-resolution transmission electron microscopy. The crystal and electronic structure of the nondoped as well as Eu2+, R2+/3+ and other defect containing materials were studied using DFT calculations. The experimental trap depths were obtained using thermoluminescence (TL) spectroscopy. The emission and excitation of Sr2MgSi2O7:Eu2+,Dy3+ were also studied. Significant modifications in the local crystal structure due to the Eu2+ ion and lattice defects were found by the experimental and DFT methods. The charge compensation effects induced by the R3+ co-doping further increased the number of defects and distortions in the host lattice. As for the electronic structure of Sr2MgSi2O7 and SrAl2O4, the experimental band gap energy of the host materials was well reproduced by the calculations. The DFT calculated Eu2+ and R2+/3+ 4fn as well as 4fn-15d1 ground states in the Sr2MgSi2O7 band structure provide an independent verification for an empirical model which is constructed using rather sparse experimental data for the R3+ and especially the R2+ ions. The intrinsic and defect induced electron traps were found to act together as energy storage sites contributing to the materials’ efficient persistent luminescence. The calculated trap energy range agreed with the trap structure of Sr2MgSi2O7 obtained using TL measurements. More experimental studies should be carried out for SrAl2O4 to compare with the DFT calculations. The calculated and experimental results show that the electron traps created by both the rare earth ions and vacancies are modified due to the defect aggregation and charge compensation effects. The relationships between this modification and the energy storage properties of the solid state materials are discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Wastes and side streams in the mining industry and different anthropogenic wastes often contain valuable metals in such concentrations their recovery may be economically viable. These raw materials are collectively called secondary raw materials. The recovery of metals from these materials is also environmentally favorable, since many of the metals, for example heavy metals, are hazardous to the environment. This has been noticed in legislative bodies, and strict regulations for handling both mining and anthropogenic wastes have been developed, mainly in the last decade. In the mining and metallurgy industry, important secondary raw materials include, for example, steelmaking dusts (recoverable metals e.g. Zn and Mo), zinc plant residues (Ag, Au, Ga, Ge, In) and waste slurry from Bayer process alumina production (Ga, REE, Ti, V). From anthropogenic wastes, waste electrical and electronic equipment (WEEE), among them LCD screens and fluorescent lamps, are clearly the most important from a metals recovery point of view. Metals that are commonly recovered from WEEE include, for example, Ag, Au, Cu, Pd and Pt. In LCD screens indium, and in fluorescent lamps, REEs, are possible target metals. Hydrometallurgical processing routes are highly suitable for the treatment of complex and/or low grade raw materials, as secondary raw materials often are. These solid or liquid raw materials often contain large amounts of base metals, for example. Thus, in order to recover valuable metals, with small concentrations, highly selective separation methods, such as hydrometallurgical routes, are needed. In addition, hydrometallurgical processes are also seen as more environmental friendly, and they have lower energy consumption, when compared to pyrometallurgical processes. In this thesis, solvent extraction and ion exchange are the most important hydrometallurgical separation methods studied. Solvent extraction is a mainstream unit operation in the metallurgical industry for all kinds of metals, but for ion exchange, practical applications are not as widespread. However, ion exchange is known to be particularly suitable for dilute feed solutions and complex separation tasks, which makes it a viable option, especially for processing secondary raw materials. Recovering valuable metals was studied with five different raw materials, which included liquid and solid side streams from metallurgical industries and WEEE. Recovery of high purity (99.7%) In, from LCD screens, was achieved by leaching with H2SO4, extracting In and Sn to D2EHPA, and selectively stripping In to HCl. In was also concentrated in the solvent extraction stage from 44 mg/L to 6.5 g/L. Ge was recovered as a side product from two different base metal process liquors with Nmethylglucamine functional chelating ion exchange resin (IRA-743). Based on equilibrium and dynamic modeling, a mechanism for this moderately complex adsorption process was suggested. Eu and Y were leached with high yields (91 and 83%) by 2 M H2SO4 from a fluorescent lamp precipitate of waste treatment plant. The waste also contained significant amounts of other REEs such as Gd and Tb, but these were not leached with common mineral acids in ambient conditions. Zn was selectively leached over Fe from steelmaking dusts with a controlled acidic leaching method, in which the pH did not go below, but was held close as possible to, 3. Mo was also present in the other studied dust, and was leached with pure water more effectively than with the acidic methods. Good yield and selectivity in the solvent extraction of Zn was achieved by D2EHPA. However, Fe needs to be eliminated in advance, either by the controlled leaching method or, for example, by precipitation. 100% Pure Mo/Cr product was achieved with quaternary ammonium salt (Aliquat 336) directly from the water leachate, without pH adjustment (pH 13.7). A Mo/Cr mixture was also obtained from H2SO4 leachates with hydroxyoxime LIX 84-I and trioctylamine (TOA), but the purities were 70% at most. However with Aliquat 336, again an over 99% pure mixture was obtained. High selectivity for Mo over Cr was not achieved with any of the studied reagents. Ag-NaCl solution was purified from divalent impurity metals by aminomethylphosphonium functional Lewatit TP-260 ion exchange resin. A novel preconditioning method, named controlled partial neutralization, with conjugate bases of weak organic acids, was used to control the pH in the column to avoid capacity losses or precipitations. Counter-current SMB was shown to be a better process configuration than either batch column operation or the cross-current operation conventionally used in the metallurgical industry. The raw materials used in this thesis were also evaluated from an economic point of view, and the precipitate from a waste fluorescent lamp treatment process was clearly shown to be the most promising.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This review highlights the current advances in knowledge about the safety, efficacy, quality control, marketing and regulatory aspects of botanical medicines. Phytotherapeutic agents are standardized herbal preparations consisting of complex mixtures of one or more plants which contain as active ingredients plant parts or plant material in the crude or processed state. A marked growth in the worldwide phytotherapeutic market has occurred over the last 15 years. For the European and USA markets alone, this will reach about $7 billion and $5 billion per annum, respectively, in 1999, and has thus attracted the interest of most large pharmaceutical companies. Insufficient data exist for most plants to guarantee their quality, efficacy and safety. The idea that herbal drugs are safe and free from side effects is false. Plants contain hundreds of constituents and some of them are very toxic, such as the most cytotoxic anti-cancer plant-derived drugs, digitalis and the pyrrolizidine alkaloids, etc. However, the adverse effects of phytotherapeutic agents are less frequent compared with synthetic drugs, but well-controlled clinical trials have now confirmed that such effects really exist. Several regulatory models for herbal medicines are currently available including prescription drugs, over-the-counter substances, traditional medicines and dietary supplements. Harmonization and improvement in the processes of regulation is needed, and the general tendency is to perpetuate the German Commission E experience, which combines scientific studies and traditional knowledge (monographs). Finally, the trend in the domestication, production and biotechnological studies and genetic improvement of medicinal plants, instead of the use of plants harvested in the wild, will offer great advantages, since it will be possible to obtain uniform and high quality raw materials which are fundamental to the efficacy and safety of herbal drugs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

There exist several researches and applications about laser welding monitoring and parameter control but not a single one have been created for controlling of laser scribing processes. Laser scribing is considered to be very fast and accurate process and thus it would be necessary to develop accurate turning and monitoring system for such a process. This research focuses on finding out whether it would be possible to develop real-time adaptive control for ultra-fast laser scribing processes utilizing spectrometer online monitoring. The thesis accurately presents how control code for laser parameter tuning is developed using National Instrument's LabVIEW and how spectrometer is being utilized in online monitoring. Results are based on behavior of the control code and accuracy of the spectrometer monitoring when scribing different steel materials. Finally control code success is being evaluated and possible development ideas for future are presented.