994 resultados para mass haul optimisation
Resumo:
We present a mass-conservative vertex-centred finite volume method for efficiently solving the mixed form of Richards’ equation in heterogeneous porous media. The spatial discretisation is particularly well-suited to heterogeneous media because it produces consistent flux approximations at quadrature points where material properties are continuous. Combined with the method of lines, the spatial discretisation gives a set of differential algebraic equations amenable to solution using higher-order implicit solvers. We investigate the solution of the mixed form using a Jacobian-free inexact Newton solver, which requires the solution of an extra variable for each node in the mesh compared to the pressure-head form. By exploiting the structure of the Jacobian for the mixed form, the size of the preconditioner is reduced to that for the pressure-head form, and there is minimal computational overhead for solving the mixed form. The proposed formulation is tested on two challenging test problems. The solutions from the new formulation offer conservation of mass at least one order of magnitude more accurate than a pressure head formulation, and the higher-order temporal integration significantly improves both the mass balance and computational efficiency of the solution.
Resumo:
We present here a numerical study of laminar doubly diffusive free convection flows adjacent to a vertical surface in a stable thermally stratified medium. The governing equations of mass, momentum, energy and species are non-dimensionalized. These equations have been solved by using an implicit finite difference method and local non-similarity method. The results show many interesting aspects of complex interaction of the two buoyant mechanisms that have been shown in both the tabular as well as graphical form.
Resumo:
In this paper we investigate the heuristic construction of bijective s-boxes that satisfy a wide range of cryptographic criteria including algebraic complexity, high nonlinearity, low autocorrelation and have none of the known weaknesses including linear structures, fixed points or linear redundancy. We demonstrate that the power mappings can be evolved (by iterated mutation operators alone) to generate bijective s-boxes with the best known tradeoffs among the considered criteria. The s-boxes found are suitable for use directly in modern encryption algorithms.
Resumo:
There is worldwide interest in reducing aircraft emissions. The difficulty of reducing emissions including water vapour, carbon dioxide (CO2) and oxides of nitrogen (NOx) is mainly due from the fact that a commercial aircraft is usually designed for a particular optimal cruise altitude but may be requested or required to operate and deviate at different altitude and speeds to archive a desired or commanded flight plan, resulting in increased emissions. This is a multi- disciplinary problem with multiple trade-offs such as optimising engine efficiency, minimising fuel burnt, minimise emissions while maintaining aircraft separation and air safety. This project presents the coupling of an advanced optimisation technique with mathematical models and algorithms for aircraft emission reduction through flight optimisation. Numerical results show that the method is able to capture a set of useful trade-offs between aircraft range and NOx, and mission fuel consumption and NOx. In addition, alternative cruise operating conditions including Mach and altitude that produce minimum NOx and CO2 (minimum mission fuel weight) are suggested.
Resumo:
We report the production of free-standing thin sheets made up of mass-produced ZnO nanowires and the application of these nanowire sheets for the fabrication of ZnO/organic hybrid light-emitting diodes in the manner of assembly. Different p-type organic semiconductors are used to form heterojunctions with the ZnO nanowire film. Electroluminescence measurements of the devices show UV and visible emissions. Identical strong red emission is observed independent of the organic semiconductor materials used in this work. The visible emissions corresponding to the electron transition between defect levels within the energy bandgap of ZnO are discussed.
Resumo:
We have grown defect-rich ZnO nanowires on a large scale by the vapour phase reaction method without using any metal catalyst and vacuum system. The defects, including zinc vacancies, oxygen interstitials and oxygen antisites, are related to the excess of oxygen in ZnO nanowires and are controllable. The nanowires having high excess of oxygen exhibit a brown-colour photoluminescence, due to the dominant emission band composed by violet, blue and green emissions. Those having more balanced Zn and O show a dominant green emission, giving rise to a green colour under UV light illumination. By O2-annealing treatment the violet luminescence after the band-edge emission UV peak can be enhanced for as-grown nanowires. However, the green emission shows different changing trends under O2-annealing treatment, associated with the excess of oxygen in the nanowires.
Resumo:
Railway timetabling is an important process in train service provision as it matches the transportation demand with the infrastructure capacity while customer satisfaction is also considered. It is a multi-objective optimisation problem, in which a feasible solution, rather than the optimal one, is usually taken in practice because of the time constraint. The quality of services may suffer as a result. In a railway open market, timetabling usually involves rounds of negotiations among a number of self-interested and independent stakeholders and hence additional objectives and constraints are imposed on the timetabling problem. While the requirements of all stakeholders are taken into consideration simultaneously, the computation demand is inevitably immense. Intelligent solution-searching techniques provide a possible solution. This paper attempts to employ a particle swarm optimisation (PSO) approach to devise a railway timetable in an open market. The suitability and performance of PSO are studied on a multi-agent-based railway open-market negotiation simulation platform.
Resumo:
In recent years, development of Unmanned Aerial Vehicles (UAV) has become a significant growing segment of the global aviation industry. These vehicles are developed with the intention of operating in regions where the presence of onboard human pilots is either too risky or unnecessary. Their popularity with both the military and civilian sectors have seen the use of UAVs in a diverse range of applications, from reconnaissance and surveillance tasks for the military, to civilian uses such as aid relief and monitoring tasks. Efficient energy utilisation on an UAV is essential to its functioning, often to achieve the operational goals of range, endurance and other specific mission requirements. Due to the limitations of the space available and the mass budget on the UAV, it is often a delicate balance between the onboard energy available (i.e. fuel) and achieving the operational goals. This thesis presents an investigation of methods for increasing the energy efficiency on UAVs. One method is via the development of a Mission Waypoint Optimisation (MWO) procedure for a small fixed-wing UAV, focusing on improving the onboard fuel economy. MWO deals with a pre-specified set of waypoints by modifying the given waypoints within certain limits to achieve its optimisation objectives of minimising/maximising specific parameters. A simulation model of a UAV was developed in the MATLAB Simulink environment, utilising the AeroSim Blockset and the in-built Aerosonde UAV block and its parameters. This simulation model was separately integrated with a multi-objective Evolutionary Algorithm (MOEA) optimiser and a Sequential Quadratic Programming (SQP) solver to perform single-objective and multi-objective optimisation procedures of a set of real-world waypoints in order to minimise the onboard fuel consumption. The results of both procedures show potential in reducing fuel consumption on a UAV in a ight mission. Additionally, a parallel Hybrid-Electric Propulsion System (HEPS) on a small fixedwing UAV incorporating an Ideal Operating Line (IOL) control strategy was developed. An IOL analysis of an Aerosonde engine was performed, and the most efficient (i.e. provides greatest torque output at the least fuel consumption) points of operation for this engine was determined. Simulation models of the components in a HEPS were designed and constructed in the MATLAB Simulink environment. It was demonstrated through simulation that an UAV with the current HEPS configuration was capable of achieving a fuel saving of 6.5%, compared to the ICE-only configuration. These components form the basis for the development of a complete simulation model of a Hybrid-Electric UAV (HEUAV).
Resumo:
This paper investigates the field programmable gate array (FPGA) approach for multi-objective and multi-disciplinary design optimisation (MDO) problems. One class of optimisation method that has been well-studied and established for large and complex problems, such as those inherited in MDO, is multi-objective evolutionary algorithms (MOEAs). The MOEA, nondominated sorting genetic algorithm II (NSGA-II), is hardware implemented on an FPGA chip. The NSGA-II on FPGA application to multi-objective test problem suites has verified the designed implementation effectiveness. Results show that NSGA-II on FPGA is three orders of magnitude better than the PC based counterpart.
Resumo:
This paper investigates the High Lift System (HLS) application of complex aerodynamic design problem using Particle Swarm Optimisation (PSO) coupled to Game strategies. Two types of optimization methods are used; the first method is a standard PSO based on Pareto dominance and the second method hybridises PSO with a well-known Nash Game strategies named Hybrid-PSO. These optimization techniques are coupled to a pre/post processor GiD providing unstructured meshes during the optimisation procedure and a transonic analysis software PUMI. The computational efficiency and quality design obtained by PSO and Hybrid-PSO are compared. The numerical results for the multi-objective HLS design optimisation clearly shows the benefits of hybridising a PSO with the Nash game and makes promising the above methodology for solving other more complex multi-physics optimisation problems in Aeronautics.
Resumo:
Abstract—Computational Intelligence Systems (CIS) is one of advanced softwares. CIS has been important position for solving single-objective / reverse / inverse and multi-objective design problems in engineering. The paper hybridise a CIS for optimisation with the concept of Nash-Equilibrium as an optimisation pre-conditioner to accelerate the optimisation process. The hybridised CIS (Hybrid Intelligence System) coupled to the Finite Element Analysis (FEA) tool and one type of Computer Aided Design(CAD) system; GiD is applied to solve an inverse engineering design problem; reconstruction of High Lift Systems (HLS). Numerical results obtained by the hybridised CIS are compared to the results obtained by the original CIS. The benefits of using the concept of Nash-Equilibrium are clearly demonstrated in terms of solution accuracy and optimisation efficiency.
Resumo:
INTRODUCTION: Workforce planning for first aid and medical coverage of mass gatherings is hampered by limited research. In particular, the characteristics and likely presentation patterns of low-volume mass gatherings of between several hundred to several thousand people are poorly described in the existing literature. OBJECTIVES: This study was conducted to: 1. Describe key patient and event characteristics of medical presentations at a series of mass gatherings, including events smaller than those previously described in the literature; 2. Determine whether event type and event size affect the mean number of patients presenting for treatment per event, and specifically, whether the 1:2,000 deployment rule used by St John Ambulance Australia is appropriate; and 3. Identify factors that are predictive of injury at mass gatherings. METHODS: A retrospective, observational, case-series design was used to examine all cases treated by two Divisions of St John Ambulance (Queensland) in the greater metropolitan Brisbane region over a three-year period (01 January 2002-31 December 2004). Data were obtained from routinely collected patient treatment forms completed by St John officers at the time of treatment. Event-related data (e.g., weather, event size) were obtained from event forms designed for this study. Outcome measures include: total and average number of patient presentations for each event; event type; and event size category. Descriptive analyses were conducted using chi-square tests, and mean presentations per event and event type were investigated using Kruskal-Wallis tests. Logistic regression analyses were used to identify variables independently associated with injury presentation (compared with non-injury presentations). RESULTS: Over the three-year study period, St John Ambulance officers treated 705 patients over 156 separate events. The mean number of patients who presented with any medical condition at small events (less than or equal to 2,000 attendees) did not differ significantly from that of large (>2,000 attendees) events (4.44 vs. 4.67, F = 0.72, df = 1, 154, p = 0.79). Logistic regression analyses indicated that presentation with an injury compared with non-injury was independently associated with male gender, winter season, and sporting events, even after adjusting for relevant variables. CONCLUSIONS: In this study of low-volume mass gatherings, a similar number of patients sought medical treatment at small (<2,000 patrons) and large (>2,000 patrons) events. This demonstrates that for low-volume mass gatherings, planning based solely on anticipated event size may be flawed, and could lead to inappropriate levels of first-aid coverage. This study also highlights the importance of considering other factors, such as event type and patient characteristics, when determining appropriate first-aid resourcing for low-volume events. Additionally, identification of factors predictive of injury presentations at mass gatherings has the potential to significantly enhance the ability of event coordinators to plan effective prevention strategies and response capability for these events.
Resumo:
There are many applications in aeronautical/aerospace engineering where some values of the design parameters states cannot be provided or determined accurately. These values can be related to the geometry(wingspan, length, angles) and or to operational flight conditions that vary due to the presence of uncertainty parameters (Mach, angle of attack, air density and temperature, etc.). These uncertainty design parameters cannot be ignored in engineering design and must be taken into the optimisation task to produce more realistic and reliable solutions. In this paper, a robust/uncertainty design method with statistical constraints is introduced to produce a set of reliable solutions which have high performance and low sensitivity. Robust design concept coupled with Multi Objective Evolutionary Algorithms (MOEAs) is defined by applying two statistical sampling formulas; mean and variance/standard deviation associated with the optimisation fitness/objective functions. The methodology is based on a canonical evolution strategy and incorporates the concepts of hierarchical topology, parallel computing and asynchronous evaluation. It is implemented for two practical Unmanned Aerial System (UAS) design problems; the flrst case considers robust multi-objective (single disciplinary: aerodynamics) design optimisation and the second considers a robust multidisciplinary (aero structures) design optimisation. Numerical results show that the solutions obtained by the robust design method with statistical constraints have a more reliable performance and sensitivity in both aerodynamics and structures when compared to the baseline design.
Resumo:
The use of adaptive wing/aerofoil designs is being considered as promising techniques in aeronautic/aerospace since they can reduce aircraft emissions, improve aerodynamic performance of manned or unmanned aircraft. The paper investigates the robust design and optimisation for one type of adaptive techniques; Active Flow Control (AFC) bump at transonic flow conditions on a Natural Laminar Flow (NLF) aerofoil designed to increase aerodynamic efficiency (especially high lift to drag ratio). The concept of using Shock Control Bump (SCB) is to control supersonic flow on the suction/pressure side of NLF aerofoil: RAE 5243 that leads to delaying shock occurrence or weakening its strength. Such AFC technique reduces total drag at transonic speeds due to reduction of wave drag. The location of Boundary Layer Transition (BLT) can influence the position the supersonic shock occurrence. The BLT position is an uncertainty in aerodynamic design due to the many factors, such as surface contamination or surface erosion. The paper studies the SCB shape design optimisation using robust Evolutionary Algorithms (EAs) with uncertainty in BLT positions. The optimisation method is based on a canonical evolution strategy and incorporates the concepts of hierarchical topology, parallel computing and asynchronous evaluation. Two test cases are conducted; the first test assumes the BLT is at 45% of chord from the leading edge and the second test considers robust design optimisation for SCB at the variability of BLT positions and lift coefficient. Numerical result shows that the optimisation method coupled to uncertainty design techniques produces Pareto optimal SCB shapes which have low sensitivity and high aerodynamic performance while having significant total drag reduction.
Resumo:
The idea of body weight regulation implies that a biological mechanism exerts control over energy expenditure and food intake. This is a central tenet of energy homeostasis. However, the source and identity of the controlling mechanism have not been identified, although it is often presumed to be some long-acting signal related to body fat, such as leptin. Using a comprehensive experimental platform, we have investigated the relationship between biological and behavioural variables in two separate studies over a 12-week intervention period in obese adults (total n 92). All variables have been measured objectively and with a similar degree of scientific control and precision, including anthropometric factors, body composition, RMR and accumulative energy consumed at individual meals across the whole day. Results showed that meal size and daily energy intake (EI) were significantly correlated with fat-free mass (FFM, P values ,0·02–0·05) but not with fat mass (FM) or BMI (P values 0·11–0·45) (study 1, n 58). In study 2 (n 34), FFM (but not FM or BMI) predicted meal size and daily EI under two distinct dietary conditions (high-fat and low-fat). These data appear to indicate that, under these circumstances, some signal associated with lean mass (but not FM) exerts a determining effect over self-selected food consumption. This signal may be postulated to interact with a separate class of signals generated by FM. This finding may have implications for investigations of the molecular control of food intake and body weight and for the management of obesity.