996 resultados para major parameters
Resumo:
Background Gliadins are a major component of gluten proteins but their role in the mixing of dough is not well understood because their contribution to wheat flour functional properties are not as clear as for the glutenin fraction. Methodology/Principal Findings Transgenic lines of bread wheat with γ-gliadins suppressed by RNAi are reported. The effects on the gluten protein composition and on technological properties of flour were analyzed by RP-HPLC, by sodium dodecyl sulfate sedimentation (SDSS) test and by Mixograph analysis. The silencing of γ-gliadins by RNAi in wheat lines results in an increase in content of all other gluten proteins. Despite the gluten proteins compensation, in silico analysis of amino acid content showed no difference in the γ-gliadins silenced lines. The SDSS test and Mixograph parameters were slightly affected by the suppression of γ-gliadins. Conclusions/Significance Therefore, it is concluded that γ-gliadins do not have an essential functional contribution to the bread-making quality of wheat dough, and their role can be replaced by other gluten proteins
Resumo:
Soybean meal (SBM) is the main protein source in livestock feeds. United States (USA), Brazil (BRA), and Argentine (ARG) are the major SBM exporter countries. The nutritive value of SBM varies because genetics, environment, farming conditions, and processing of the beans influence strongly the content and availability of major nutrients. The present research was conducted to determine the influence of origin (USA, BRA and ARG) on nutritive value and protein quality of SBM.
Resumo:
Both stress-system activation and melancholic depression are characterized by fear, constricted affect, stereotyped thinking, and similar changes in autonomic and neuroendocrine function. Because norepinephrine (NE) and corticotropin-releasing hormone (CRH) can produce these physiological and behavioral changes, we measured the cerebrospinal fluid (CSF) levels each hour for 30 consecutive hours in controls and in patients with melancholic depression. Plasma adrenocorticotropic hormone (ACTH) and cortisol levels were obtained every 30 min. Depressed patients had significantly higher CSF NE and plasma cortisol levels that were increased around the clock. Diurnal variations in CSF NE and plasma cortisol levels were virtually superimposable and positively correlated with each other in both patients and controls. Despite their hypercortisolism, depressed patients had normal levels of plasma ACTH and CSF CRH. However, plasma ACTH and CSF CRH levels in depressed patients were inappropriately high, considering the degree of their hypercortisolism. In contrast to the significant negative correlation between plasma cortisol and CSF CRH levels seen in controls, patients with depression showed no statistical relationship between these parameters. These data indicate that persistent stress-system dysfunction in melancholic depression is independent of the conscious stress of the disorder. These data also suggest mutually reinforcing bidirectional links between a central hypernoradrenergic state and the hyperfunctioning of specific central CRH pathways that each are driven and sustained by hypercortisolism. We postulate that α-noradrenergic blockade, CRH antagonists, and treatment with antiglucocorticoids may act at different loci, alone or in combination, in the treatment of major depression with melancholic features.
Resumo:
There is strong scientific evidence from research trials that aging is associated with loss of muscle mass and decline of neuromuscular abilities. Postural stability is an important neuromuscular ability for the maintenance of upright posture as well as maintaining equilibrium or balance while performing movements and everyday activities. Postural stability is also an important factor in elderly people where postural instability is a major contributor to falls. In our study young and elderly subjects stood quietly in upright posture with parallel positions of their feet and opened eyes on a force platform and performed 3 trials with each trial lasting 30 s. The effects of healthy aging on postural sway parameters were studied. We found that age-related changes in postural sway mostly affect the velocity of the center of pressure movement and the mean amplitude center of pressure movement during static postural sway test.
Resumo:
Biogeochemical reef studies carried out in 1981 and 1984 found low concentration of total natural and anthropogenic hydrocarbons in inshore waters. Detection of lignin in marine and bottom sediments indicates that the land has major effect on makeup of organic matter there. Comparison of compositions of organic matter in sea water, suspended matter and bottom sediments indicated that it was altered rapidly by the reef community. Thus, in the inshore zone of the island, runoff from the land is important in supplying nutrients to the reef ecosystem alongside with transport of nutrients by deep waters. Concentrations of nutri¬ents (N, P) in the inshore zone are higher than in waters of the tropical part of the ocean. Nitrogen is the limiting element in development of phytoplankton in the inshore zone.
Resumo:
Traffic incidents are non-recurring events that can cause a temporary reduction in roadway capacity. They have been recognized as a major contributor to traffic congestion on our nation’s highway systems. To alleviate their impacts on capacity, automatic incident detection (AID) has been applied as an incident management strategy to reduce the total incident duration. AID relies on an algorithm to identify the occurrence of incidents by analyzing real-time traffic data collected from surveillance detectors. Significant research has been performed to develop AID algorithms for incident detection on freeways; however, similar research on major arterial streets remains largely at the initial stage of development and testing. This dissertation research aims to identify design strategies for the deployment of an Artificial Neural Network (ANN) based AID algorithm for major arterial streets. A section of the US-1 corridor in Miami-Dade County, Florida was coded in the CORSIM microscopic simulation model to generate data for both model calibration and validation. To better capture the relationship between the traffic data and the corresponding incident status, Discrete Wavelet Transform (DWT) and data normalization were applied to the simulated data. Multiple ANN models were then developed for different detector configurations, historical data usage, and the selection of traffic flow parameters. To assess the performance of different design alternatives, the model outputs were compared based on both detection rate (DR) and false alarm rate (FAR). The results show that the best models were able to achieve a high DR of between 90% and 95%, a mean time to detect (MTTD) of 55-85 seconds, and a FAR below 4%. The results also show that a detector configuration including only the mid-block and upstream detectors performs almost as well as one that also includes a downstream detector. In addition, DWT was found to be able to improve model performance, and the use of historical data from previous time cycles improved the detection rate. Speed was found to have the most significant impact on the detection rate, while volume was found to contribute the least. The results from this research provide useful insights on the design of AID for arterial street applications.
Resumo:
Coral reefs are in decline worldwide and coral disease is a significant contributing factor. However, etiologies of coral diseases are still not well understood. In contrast with the Caribbean, extremely little is known about coral diseases in the Philippines. In 2005, off Southeast Negros Island, Philippines, I investigated relationships between environmental parameters and prevalence of the two most common coral diseases, ulcerative white spot (UWS) and massive Porites growth anomalies (MPGAs). Samples were collected along a disease prevalence gradient 40.5 km long. Principal component analyses showed prevalence of MPGAs was positively correlated with water column nitrogen, organic carbon of surface sediments, and colony density. UWS was positively correlated with water column phosphorus. This is the first quantitative evidence linking anthropogenically-impacted water and sediment to a higher prevalence of these diseases. Histological and cytological alterations were investigated by comparing tissues from two distinct types of MPGA lesions (types 1 and 2) and healthy coral using light and electron microscopy. Skeletal abnormalities and sloughing, swelling, thinning, and loss of tissues in MPGAs resembled tissues exposed to bacterial or fungal toxins. Both lesion types had decreases in symbiotic zooxanthellae, which supply nutrients to corals. Notable alterations included migrations of chromophore cells (amoebocytes) (1) nocturnally to outer epithelia to perform wound-healing, including plugging gaps and secreting melanin in degraded tissues, and (2) diurnally to the interior of the tissue possibly to prevent shading zooxanthellae in order to maximize photosynthate production. Depletion of melanin (active in wound healing) in type 2 lesions suggested type 2 tissues were overtaxed and less stable. MPGAs contained an abundance of endolithic fungi and virus-like particles, which may result from higher nutrient levels and play roles in disease development. Swollen cells and mucus frequently blocked gastrovascular canals (GVCs) in MPGAs. Type 1 lesions appeared to compensate for impeded flow of wastes and nutrients through these canals with proliferation of new GVCs, which were responsible for the observed thickened tissues. In contrast, type 2 tissues were thin and more degraded. Dysplasia and putative neoplasia were also observed in MPGAs which may result from the tissue regeneration capacity being overwhelmed.
Resumo:
Traffic incidents are non-recurring events that can cause a temporary reduction in roadway capacity. They have been recognized as a major contributor to traffic congestion on our national highway systems. To alleviate their impacts on capacity, automatic incident detection (AID) has been applied as an incident management strategy to reduce the total incident duration. AID relies on an algorithm to identify the occurrence of incidents by analyzing real-time traffic data collected from surveillance detectors. Significant research has been performed to develop AID algorithms for incident detection on freeways; however, similar research on major arterial streets remains largely at the initial stage of development and testing. This dissertation research aims to identify design strategies for the deployment of an Artificial Neural Network (ANN) based AID algorithm for major arterial streets. A section of the US-1 corridor in Miami-Dade County, Florida was coded in the CORSIM microscopic simulation model to generate data for both model calibration and validation. To better capture the relationship between the traffic data and the corresponding incident status, Discrete Wavelet Transform (DWT) and data normalization were applied to the simulated data. Multiple ANN models were then developed for different detector configurations, historical data usage, and the selection of traffic flow parameters. To assess the performance of different design alternatives, the model outputs were compared based on both detection rate (DR) and false alarm rate (FAR). The results show that the best models were able to achieve a high DR of between 90% and 95%, a mean time to detect (MTTD) of 55-85 seconds, and a FAR below 4%. The results also show that a detector configuration including only the mid-block and upstream detectors performs almost as well as one that also includes a downstream detector. In addition, DWT was found to be able to improve model performance, and the use of historical data from previous time cycles improved the detection rate. Speed was found to have the most significant impact on the detection rate, while volume was found to contribute the least. The results from this research provide useful insights on the design of AID for arterial street applications.
Resumo:
Coral reefs are in decline worldwide and coral disease is a significant contributing factor. However, etiologies of coral diseases are still not well understood. In contrast with the Caribbean, extremely little is known about coral diseases in the Philippines. In 2005, off Southeast Negros Island, Philippines, I investigated relationships between environmental parameters and prevalence of the two most common coral diseases, ulcerative white spot (UWS) and massive Porites growth anomalies (MPGAs). Samples were collected along a disease prevalence gradient 40.5 km long. Principal component analyses showed prevalence of MPGAs was positively correlated with water column nitrogen, organic carbon of surface sediments, and colony density. UWS was positively correlated with water column phosphorus. This is the first quantitative evidence linking anthropogenically-impacted water and sediment to a higher prevalence of these diseases. Histological and cytological alterations were investigated by comparing tissues from two distinct types of MPGA lesions (types 1 and 2) and healthy coral using light and electron microscopy. Skeletal abnormalities and sloughing, swelling, thinning, and loss of tissues in MPGAs resembled tissues exposed to bacterial or fungal toxins. Both lesion types had decreases in symbiotic zooxanthellae, which supply nutrients to corals. Notable alterations included migrations of chromophore cells (amoebocytes) (1) nocturnally to outer epithelia to perform wound-healing, including plugging gaps and secreting melanin in degraded tissues, and (2) diurnally to the interior of the tissue possibly to prevent shading zooxanthellae in order to maximize photosynthate production. Depletion of melanin (active in wound healing) in type 2 lesions suggested type 2 tissues were overtaxed and less stable. MPGAs contained an abundance of endolithic fungi and virus-like particles, which may result from higher nutrient levels and play roles in disease development. Swollen cells and mucus frequently blocked gastrovascular canals (GVCs) in MPGAs. Type 1 lesions appeared to compensate for impeded flow of wastes and nutrients through these canals with proliferation of new GVCs, which were responsible for the observed thickened tissues. In contrast, type 2 tissues were thin and more degraded. Dysplasia and putative neoplasia were also observed in MPGAs which may result from the tissue regeneration capacity being overwhelmed.