138 resultados para lycopene
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Agronomia (Produção Vegetal) - FCAV
Resumo:
Antioxidants are compounds responsible for free radical scavenging in the body. They protect the organism from oxidative modification of cells and tissues. These modifications have been associated with degenerative diseases, atherosclerosis and carcinogenesis. Punica granatum displays high antioxidant potential due to the presence of phenolic compounds, which are capable of disease prevention. The present study showed the highest antioxidant activity in pomegranate peel than in seeds and pulp. Based on these results, pomegranate peel was used to produce dried extract that was added to commercial tomato juice and orange juice with strawberries. Analysis to determine the content of phenolic compounds and antioxidant activity was performed on pomegranate pulp, seeds and peel and in juices enriched with dried extract of pomegranate peel. The dried extract was responsible for a significant increase in antioxidant activity of the juices, proportional to the concentrations added. However, although both flavors of enriched juices displayed high antioxidant levels, the samples with higher dried extract concentrations received the lowest scores from sensory analysis participants due to the characteristic astringent flavor of pomegranate peels. Therefore, to obtain greater acceptance in the consumer market, we concluded that the maximum addition of dried pomegranate peel extract is 0.5% in tomato juice and orange juice with strawberries.
Resumo:
The market for cosmeceuticals continues with significant annual growth, but today consumers are more aware of nutritional products that contribute to both skin health and disease prevention. In the last 10 years, pharmacists, chemists, nutritionists, and physicians have been working together to develop new nutritional applications to satisfy peoples needs and demands. As a recent result of convergence phenomenon between cosmetics and food industries, nutricosmetics is a blurry area unfamiliar to many consumers and sometimes even to foods and cosmetics experts. Characterized by oral supplementation of nutrients, nutricosmetics are also known as beauty pills,beauty from within, and even oral cosmetics. The major claim is the antiaging effect, reducing wrinkles by fighting free radicals generated by solar radiation. Among the ingredients used in nutricosmetics, antioxidants represent the most crucial. The best-known antioxidants are carotenoids (beta-carotene, lycopene, lutein, zeaxanthin, and astaxanthin) and polyphenols (anthocyanidins, catechins, flavonoids, tannins, and procyanidins). This study presents an overview about the concept of nutricosmetics and gives us information about the difference between nutricosmetics, nutraceuticals, and cosmeceuticals. The article also discusses about carotenoids and polyphenols, two classes of ingredients often employed in such products.
Resumo:
beta-Carotene (BC) is one of the natural pigments that is most commonly added to food; however, the utilization of BC is limited due to its instability. Microencapsulation techniques are commonly used because they can protect the microencapsulated material from oxidization. Nevertheless, the properties of the encapsulated compounds must be studied. We compared the antigenotoxic potential of pure and microencapsulated beta-carotene (mBC) in Wistar rats. Two doses of BC or mBC (2.5 or 5.0 mg/kg) were administered by gavage over a period of 14 days. The final gavage was followed by an injection of doxorubicin (DXR). After 24 h the animals were euthanized. The micronucleus test results showed that when both mBC and DXR were given, only the higher dose was antigenotoxic. The results of the comet assay show that when given in association with DXR, mBC had protective effects in the liver. The differences between the results obtained with BC and mBC suggest that possibly the carotenoid biodisponibility was modified by the process of microencapsulation. In conclusion, mBC does not lose its protective properties, but higher doses must be used to observe antigenotoxic effects. This is the first time that the genotoxicity and antigenotoxicity of a microencapsulated compound was evaluated in vivo. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
Programmed cell death (PCD) is a widely spread phenomenon among multi-cellular organisms. Without the deletion of cells no longer needed, the organism will not be able to develop in a predicted way. It is now belived that all cells have the capacity to self-destruct and that the survival of the cells is depending on the repression of this suicidal programme. PCD has turned out to show similarities in many different species and there are strong indications that the mechanisms running the programme might, at least in some parts, be evolutionarily conserced. PCD is a generic term for different programmes of cell destruction, such as apoptosis and autophagic PCD. An important tool to determine if a cell is undergoing PCD is the transmitting electron microscope. The aims of my study were to find out if, and in what way, the suspensor and endosperm in Vicia faba (Broad bean), which are short-lived structures, undergoes PCD. The endosperm degradation preceed the suspensor cell death and they differ to some extent ultrastructurally. The cell death occurs in both tissues about 13-14 days after pollination when the embryo proper is mature enough to support itself. It was found that both tissues are committed to autophagic PCD, a cell death characteristic of conspicuous formations of autophagic vacuoles. It was shown by histochemical staining that acid phosphatases are accumulated in these vacuoles but are also present in the cytoplasm. These vacuoles are similar to autophagic vacuoles formed in rat liver cells, indicating that autophagy is a widely spread phenomenon. DNA fragmentation is the first visible sign of PCD in both tissues and it is demonstrated by a labelling technique (TUNEL). In the endosperm nuclei the heterochromatin subsequently appears in the form of a network, while in the suspensor it is more conspicuous, with heterochromatin that forms large electron dense aggregates located close to the nuclear envelope. In the suspensor, the plastids develop into chromoplasts with lycopene crystals at the same time or shortly after DNA fragmentation. This is probably due to the fact that the suspensor plastids function as hormone producing organelles and support the embryo proper with indispensable growth factors. Later the embryo will be able to produce its own growth factors and the synthesis of these, in particular gibberelines, might be suppressed in the suspensor. The precursors can then be used for synthesis of lycopene instead. Both the suspensor and endosperm are going through autophagic PCD, but the process differs in some respects. This is probably due the the different function of the two tissues, and that the signals that trigger the process presumably are different. The embryo proper is probably the source of the death signal affecting the suspensor. The endosperm, which has a different origin and function, might be controlling the death signal within its own cell. The death might in this case be related to the age of the cell.
Resumo:
Máster en Oceanografía
Resumo:
Die Enzyme des Carotinoidstoffwechsels spalten Provitamin A-Carotinoide in wichtige Retinoide (z.B. Vitamin A, Retinsäure), die Organismen während der Entwicklung und in visuellen Systemen benötigen. Die vorliegende Arbeit präsentiert erstmalig eine Carotinoxygenase (BCO) aus Schwämmen (S. domuncula), die einzigartig im Tierreich ist und nur einen orthologen Vertreter in Pflanzen (Crocus sativus) wieder findet. Das Enzym ist eine 7,8(7’,8’)-Carotinoxygenase, die C40-Carotinoide zu einem C10-Apocarotinoid und 8’-Apocarotinal spaltet. Mittels HPLC wurden sowohl die Primärspaltprodukte von β-Carotin, Lykopin und Zeaxanthin als auch das für alle identische innere Kettenstück (Crocetin) bei Doppelspaltung nachgewiesen. Der Nachweis der BCO-Transkripte (unter anderem in-situ) belegt eine Beteiligung des Enzyms während Entwicklungsprozessen und offenbart sowohl eine streng räumlich-zeitliche als auch eine über Rückkopplungsprozesse gesteuerte Regulierung des Enzyms. Ein weiteres hier identifiziertes Gen ähnelt einer bakteriellen Apocarotinoidoxygenase (ACO), welche das 8’-Apocarotinal der BCO erneut spaltet und so Retinal generiert. Letzteres dient als Chromophor zahlreicher visueller Systeme und kann über Enzyme des Retinoidstoffwechsels entweder gespeichert, oder in das wichtige Morphogen Retinsäure umgesetzt werden. Hier werden zwei potentielle Enzyme vorgestellt, die an dieser Interkonversion Retinal/Retinol (Speicher) beteiligt sein könnten als auch eines, das evtl. Retinal zu Retinsäure umsetzt. Die hier vorgestellten Ergebnisse unterstützen die Hypothese, dass Retinsäure kein autapomorphes Morphogen der Chordaten darstellt.
Resumo:
Grünalgen bilden zur Überdauerung schlechter Umweltbedingungen Ruhestadien, die sich durch Ausbildung einer festen Zellwand, die Reduktion des Plastiden und die starke Akkumulation von Speicherfetten und Ketocarotinoiden im Zytosol auszeichnen. Obwohl Ketocarotinoide in Grünalgen seit über vierzig Jahren beforscht werden, gab es hierzu noch wenige molekularbiologische Untersuchungen. Im Vorfeld meiner Promotion wurde durch unsere Arbeitsgruppe entdeckt, dass auch der molekular gut zugängliche Modellorganismus Chlamydomonas reinhardtii im Zygotenstadium große Mengen an Ketocarotinoiden bildet. Neben dem zu erwartenden Ketocarotinoid Astaxanthin fanden wir große Mengen des bisher nur in einer Grünalge beschriebenen 4-Ketoluteins. Vorversuche ließen die Vermutung aufkommen, dass dieses Pigment bei der Untersuchung der Pigmentausstattung in Dauerstadien von vielen Grünalgen bisher übersehen wurde. rnIn der vorliegenden Arbeit wurde daher zunächst die Pigmentzusammensetzung von Dauerstadien der bereits gut untersuchten Grünalgen Muriella zofingiensis und Scenedesmus rubescens durch Vergleich mit dem Ketocarotinoidmuster aus Dauerstadien von C. reinhardtii und Fritschiella tuberosa reevaluiert und dabei erstmals das Vorkommen signifikanter Mengen an 4-Ketolutein nachgewiesen. Außerdem zeigte sich, dass die als bisheriger Modellorganismus der Ketocarotinoidbiosynthese in Grünalgen sehr gut untersuchte Alge Haematococcus pluvialis eher eine Ausnahme darstellt, da ihre Dauerstadien als einzige der hier untersuchten Algen nur minimale Mengen von 4 Ketolutein aufwiesen. Diese Beobachtungen machen es sehr wahrscheinlich, dass die Fähigkeit zur Bildung von 4-Ketolutein unter den Grünalgen wesentlich weiter verbreitet ist als bisher angenommen. Das sekundäre Carotinoid 4-Ketolutein kam in den Dauerstadien der Grünalgen neben seiner freien Form ausschließlich als Monoacylester vor, im Gegensatz zu Astaxanthin, das als mono- und diacylierte Form auftrat. rnÜber die Analyse der Pigmentausstattung hinaus konnten die entscheidenden Schritte des Synthesewegs der Ketocarotinoide in C. reinhardtii durch funktionelle Charakterisierung der beteiligten Enzyme in Bakterien aufgeklärt werden. Als Basis für die Charakterisierungen wurde ein umfangreiches Portfolio von carotinogenen E. coli-Bakterien etabliert, darunter α Carotin und Lutein produzierende Stämme, die bisher nicht zur Verfügung standen. Das wurde durch die Klonierung der Lycopinzyklase (OluLCY) aus der Grünalge Ostreococcus lucimarinus möglich, die eine Sonderolle unter den Zyklasen einnimmt, da sie die Lycopin-β-Zyklase und Lycopin-ε-Zyklase in einem Fusionsenzym vereint. Vorteile dieses Fusionsenzyms sind die Expressionskontrolle durch nur einen Promotor und die weitgehend konstante Stöchiometrie seiner Produkte α-Carotin und β-Carotin, was die OluLCY für die biotechnologische Anwendung prädestiniert.rnDie funktionelle Charakterisierung der Carotinoidbiosyntheseenzyme aus C. reinhardtii umfasste das Schlüsselenzym der Ketocarotinoidbiosynthese, die β-Carotin-Ketolase (BKT), sowie die Carotinoid-Hydroxylasen CHYB, CYP97A5 und CYP97C3. Dabei wurde für das BKT-Enzym aus C. reinhardtii nachgewiesen, dass es nicht nur die Ketolierung von β Carotin zu Canthaxanthin und von Zeaxanthin zu Astaxanthin, sondern auch die Bildung der von α-Carotin abgeleiteten Ketocarotinoide wie 4-Keto-α-Carotin und 4 Ketolutein katalysieren kann.rn
Resumo:
BACKGROUND: Lack of reliable dietary data has hampered the ability to effectively distinguish between effects of smoking and diet on plasma antioxidant status. As confirmed by analyses of comprehensive food-frequency questionnaires, the total dietary intakes of fruit and vegetables and of dietary antioxidants were not significantly different between the study groups in the present study, thereby enabling isolation of the effect of smoking. OBJECTIVE: Our objective was to investigate the effect of smoking on plasma antioxidant status by measuring ascorbic acid, alpha-tocopherol, gamma-tocopherol, beta-carotene, and lycopene, and subsequently, to test the effect of a 3-mo dietary supplementation with a moderate-dose vitamin cocktail. DESIGN: In a double-blind, placebo-controlled design, the effect of a vitamin cocktail containing 272 mg vitamin C, 31 mg all-rac-alpha-tocopheryl acetate, and 400 microg folic acid on plasma antioxidants was determined in a population of smokers (n = 37) and nonsmokers (n = 38). The population was selected for a low intake of fruit and vegetables and recruited from the San Francisco Bay area. RESULTS: Only ascorbic acid was significantly depleted by smoking per se (P < 0.01). After the 3-mo supplementation period, ascorbic acid was efficiently repleted in smokers (P < 0.001). Plasma alpha-tocopherol and the ratio of alpha- to gamma-tocopherol increased significantly in both supplemented groups (P < 0.05). CONCLUSIONS: Our data suggest that previous reports of lower concentrations of plasma vitamin E and carotenoids in smokers than in nonsmokers may primarily have been caused by differences in dietary habits between study groups. Plasma ascorbic acid was depleted by smoking and repleted by moderate supplementation.
Resumo:
BACKGROUND: The aim of this study was to evaluate the inhibitory growth effects of different potential chemopreventive agents in vitro and to determine their influence on PSA mRNA and protein expression with an established screening platform. METHODS: LNCaP and C4-2 cells were incubated with genistein, seleno-L-methionine, lycopene, DL-alpha-tocopherol, and trans-beta-carotene at three different concentrations and cell growth was determined by the MTT assay. PSA mRNA expression was assessed by quantitative real-time RT-PCR and secreted PSA protein levels were quantified by the microparticle enzyme immunoassay. RESULTS: Genistein, seleno-l-methionine and lycopene inhibited LNCaP cell growth, and the proliferation of C4-2 cells was suppressed by seleno-L-methionine and lycopene. PSA mRNA expression was downregulated by genistein in LNCaP but not C4-2 cells. No other compound tested altered PSA mRNA expression. PSA protein expression was downregulated by genistein, seleno-L-methionine, DL-alpha-tocopherol in LNCaP cells. In C4-2 cells only genistein significantly reduced the secretion of PSA protein. CONCLUSIONS: In the LNCaP progression model PSA expression depends on the compound, its concentration and on the hormonal dependence of the cell line used and does not necessarily reflect cell growth or death. Before potential substances are evaluated in clinical trials using PSA as a surrogate end point marker, their effect on PSA mRNA and protein expression has to be considered to correctly assess treatment response by PSA.
Resumo:
A case comparison study of 159 women was conducted to test the hypotheses that women with cervical dysplasia had a higher prevalence of low dietary intakes of carotenoids, vitamin C, and folacin than women without cervical dysplasia, and that there would be no association between the risk of having cervical dysplasia and dietary intake of retinol. Information regarding the prevalence of known risk factors for cervical dysplasia, early age at first intercourse, multiple sexual partners, early age at first pregnancy, history of having sexually transmitted diseases, cigarette smoking, and sociodemographic data was collected. Dietary intake was estimated using a 97 item quantified food frequency questionnaire designed to obtain information on consumption of all sources of retinol, carotenoids, vitamin C and folacin. Univariate analyses showed that the presence of cervical dysplasia was positively and significantly associated with all the risk factors. In analyses of the association of the dietary variables with cervical dysplasia, information on carotenoid intake was calculated in two ways, as total carotenoid intake and as intake of lycopene and other carotenoids. While there appeared to be an inverse association between the presence of cervical dysplasia and intakes of lycopene and folacin, lower intake of retinol, total carotenoids, other carotenoids (non-lycopene carotenoids) or vitamin C did not increase the risk of having cervical dysplasia. Multivariable analyses showed that, in comparison to women who usually consume 105 RE/day of lycopene, the odds of having cervical dysplasia for women who consume 31-104 RE/day and 30 RE/day or less were 1.31 and 1.66 respectively. The odds of having cervical dysplasia in women who consume 199-396 mcg/day and 198 mcg/day or less of folacin were 2.66 and 2.97 respectively as compared to women who usually consume 397 mcg/day or more. These results suggest the importance of re-evaluating existing dietary data and planning in future studies to evaluate the associations of lycopene and folacin with cervical cancer, as well as to extend these results to other diet/cancer investigations. ^
Resumo:
A population-based case-comparison study of histologically confirmed lung cancer among white male and female residents of six Texas coastal counties was conducted from 1979-1982. Dietary information as well as information concerning smoking, alcohol consumption, occupational and residential exposures, and family history of cancer was obtained from 149 living cases and 359 comparison subjects.^ These data support the findings of previous studies that reported a protective association of total carotene intake with lung cancer (OR = 4.07, CI = 3.36-4.78), and no association for total Vitamin A or retinol. Of six specific carotenoids examined, these data reveal a statistically significant protective effect for alpha carotene (OR = 3.58, CI = 2.85-4.31), and an elevated, although non-significant effect for beta carotene (OR = 1.46, CI = 0.61-2.31). No consistent significant effect was found for cryptoxanthin, other xanthins, lutein or lycopene.^ Similar results were found for both males and females, and for both squamous cell and adenocarcinoma subtypes, although loss of power resulting from stratification may have rendered the celltype specific results more imprecise. These results should be considered with caution until confirmed by other studies, however, they suggest the importance of evaluating specific carotenoids in future diet-lung cancer investigations. ^