836 resultados para load-balancing scheduling
Resumo:
The research presented in this dissertation is comprised of several parts which jointly attain the goal of Semantic Distributed Database Management with Applications to Internet Dissemination of Environmental Data. ^ Part of the research into more effective and efficient data management has been pursued through enhancements to the Semantic Binary Object-Oriented database (Sem-ODB) such as more effective load balancing techniques for the database engine, and the use of Sem-ODB as a tool for integrating structured and unstructured heterogeneous data sources. Another part of the research in data management has pursued methods for optimizing queries in distributed databases through the intelligent use of network bandwidth; this has applications in networks that provide varying levels of Quality of Service or throughput. ^ The application of the Semantic Binary database model as a tool for relational database modeling has also been pursued. This has resulted in database applications that are used by researchers at the Everglades National Park to store environmental data and to remotely-sensed imagery. ^ The areas of research described above have contributed to the creation TerraFly, which provides for the dissemination of geospatial data via the Internet. TerraFly research presented herein ranges from the development of TerraFly's back-end database and interfaces, through the features that are presented to the public (such as the ability to provide autopilot scripts and on-demand data about a point), to applications of TerraFly in the areas of hazard mitigation, recreation, and aviation. ^
Resumo:
Unequaled improvements in processor and I/O speeds make many applications such as databases and operating systems to be increasingly I/O bound. Many schemes such as disk caching and disk mirroring have been proposed to address the problem. In this thesis we focus only on disk mirroring. In disk mirroring, a logical disk image is maintained on two physical disks allowing a single disk failure to be transparent to application programs. Although disk mirroring improves data availability and reliability, it has two major drawbacks. First, writes are expensive because both disks must be updated. Second, load balancing during failure mode operation is poor because all requests are serviced by the surviving disk. Distorted mirrors was proposed to address the write problem and interleaved declustering to address the load balancing problem. In this thesis we perform a comparative study of these two schemes under various operating modes. In addition we also study traditional mirroring to provide a common basis for comparison.
Resumo:
With the growing commercial importance of the Internet and the development of new real-time, connection-oriented services like IP-telephony and electronic commerce resilience is becoming a key issue in the design of TP-based networks. Two emerging technologies, which can accomplish the task of efficient information transfer, are Multiprotocol Label Switching (MPLS) and Differentiated Services. A main benefit of MPLS is the ability to introduce traffic-engineering concepts due to its connection-oriented characteristic. With MPLS it is possible to assign different paths for packets through the network. Differentiated services divides traffic into different classes and treat them differently, especially when there is a shortage of network resources. In this thesis, a framework was proposed to integrate the above two technologies and its performance in providing load balancing and improving QoS was evaluated. Simulation and analysis of this framework demonstrated that the combination of MPLS and Differentiated services is a powerful tool for QoS provisioning in IP networks.
Resumo:
The reverse time migration algorithm (RTM) has been widely used in the seismic industry to generate images of the underground and thus reduce the risk of oil and gas exploration. Its widespread use is due to its high quality in underground imaging. The RTM is also known for its high computational cost. Therefore, parallel computing techniques have been used in their implementations. In general, parallel approaches for RTM use a coarse granularity by distributing the processing of a subset of seismic shots among nodes of distributed systems. Parallel approaches with coarse granularity for RTM have been shown to be very efficient since the processing of each seismic shot can be performed independently. For this reason, RTM algorithm performance can be considerably improved by using a parallel approach with finer granularity for the processing assigned to each node. This work presents an efficient parallel algorithm for 3D reverse time migration with fine granularity using OpenMP. The propagation algorithm of 3D acoustic wave makes up much of the RTM. Different load balancing were analyzed in order to minimize possible losses parallel performance at this stage. The results served as a basis for the implementation of other phases RTM: backpropagation and imaging condition. The proposed algorithm was tested with synthetic data representing some of the possible underground structures. Metrics such as speedup and efficiency were used to analyze its parallel performance. The migrated sections show that the algorithm obtained satisfactory performance in identifying subsurface structures. As for the parallel performance, the analysis clearly demonstrate the scalability of the algorithm achieving a speedup of 22.46 for the propagation of the wave and 16.95 for the RTM, both with 24 threads.
Resumo:
Many-core systems are emerging from the need of more computational power and power efficiency. However there are many issues which still revolve around the many-core systems. These systems need specialized software before they can be fully utilized and the hardware itself may differ from the conventional computational systems. To gain efficiency from many-core system, programs need to be parallelized. In many-core systems the cores are small and less powerful than cores used in traditional computing, so running a conventional program is not an efficient option. Also in Network-on-Chip based processors the network might get congested and the cores might work at different speeds. In this thesis is, a dynamic load balancing method is proposed and tested on Intel 48-core Single-Chip Cloud Computer by parallelizing a fault simulator. The maximum speedup is difficult to obtain due to severe bottlenecks in the system. In order to exploit all the available parallelism of the Single-Chip Cloud Computer, a runtime approach capable of dynamically balancing the load during the fault simulation process is used. The proposed dynamic fault simulation approach on the Single-Chip Cloud Computer shows up to 45X speedup compared to a serial fault simulation approach. Many-core systems can draw enormous amounts of power, and if this power is not controlled properly, the system might get damaged. One way to manage power is to set power budget for the system. But if this power is drawn by just few cores of the many, these few cores get extremely hot and might get damaged. Due to increase in power density multiple thermal sensors are deployed on the chip area to provide realtime temperature feedback for thermal management techniques. Thermal sensor accuracy is extremely prone to intra-die process variation and aging phenomena. These factors lead to a situation where thermal sensor values drift from the nominal values. This necessitates efficient calibration techniques to be applied before the sensor values are used. In addition, in modern many-core systems cores have support for dynamic voltage and frequency scaling. Thermal sensors located on cores are sensitive to the core's current voltage level, meaning that dedicated calibration is needed for each voltage level. In this thesis a general-purpose software-based auto-calibration approach is also proposed for thermal sensors to calibrate thermal sensors on different range of voltages.
Resumo:
A method is outlined for optimising graph partitions which arise in mapping un- structured mesh calculations to parallel computers. The method employs a combination of iterative techniques to both evenly balance the workload and minimise the number and volume of interprocessor communications. They are designed to work efficiently in parallel as well as sequentially and when combined with a fast direct partitioning technique (such as the Greedy algorithm) to give an initial partition, the resulting two-stage process proves itself to be both a powerful and flexible solution to the static graph-partitioning problem. The algorithms can also be used for dynamic load-balancing and a clustering technique can additionally be employed to speed up the whole process. Experiments indicate that the resulting parallel code can provide high quality partitions, independent of the initial partition, within a few seconds.
Resumo:
In many areas of simulation, a crucial component for efficient numerical computations is the use of solution-driven adaptive features: locally adapted meshing or re-meshing; dynamically changing computational tasks. The full advantages of high performance computing (HPC) technology will thus only be able to be exploited when efficient parallel adaptive solvers can be realised. The resulting requirement for HPC software is for dynamic load balancing, which for many mesh-based applications means dynamic mesh re-partitioning. The DRAMA project has been initiated to address this issue, with a particular focus being the requirements of industrial Finite Element codes, but codes using Finite Volume formulations will also be able to make use of the project results.
Resumo:
Secure transmission of bulk data is of interest to many content providers. A commercially-viable distribution of content requires technology to prevent unauthorised access. Encryption tools are powerful, but have a performance cost. Without encryption, intercepted data may be illicitly duplicated and re-sold, or its commercial value diminished because its secrecy is lost. Two technical solutions make it possible to perform bulk transmissions while retaining security without too high a performance overhead. These are: 1. a) hierarchical encryption - the stronger the encryption, the harder it is to break but also the more computationally expensive it is. A hierarchical approach to key exchange means that simple and relatively weak encryption and keys are used to encrypt small chunks of data, for example 10 seconds of video. Each chunk has its own key. New keys for this bottom-level encryption are exchanged using a slightly stronger encryption, for example a whole-video key could govern the exchange of the 10-second chunk keys. At a higher level again, there could be daily or weekly keys, securing the exchange of whole-video keys, and at a yet higher level, a subscriber key could govern the exchange of weekly keys. At higher levels, the encryption becomes stronger but is used less frequently, so that the overall computational cost is minimal. The main observation is that the value of each encrypted item determines the strength of the key used to secure it. 2. b) non-symbolic fragmentation with signal diversity - communications are usually assumed to be sent over a single communications medium, and the data to have been encrypted and/or partitioned in whole-symbol packets. Network and path diversity break up a file or data stream into fragments which are then sent over many different channels, either in the same network or different networks. For example, a message could be transmitted partly over the phone network and partly via satellite. While TCP/IP does a similar thing in sending different packets over different paths, this is done for load-balancing purposes and is invisible to the end application. Network and path diversity deliberately introduce the same principle as a secure communications mechanism - an eavesdropper would need to intercept not just one transmission path but all paths used. Non-symbolic fragmentation of data is also introduced to further confuse any intercepted stream of data. This involves breaking up data into bit strings which are subsequently disordered prior to transmission. Even if all transmissions were intercepted, the cryptanalyst still needs to determine fragment boundaries and correctly order them. These two solutions depart from the usual idea of data encryption. Hierarchical encryption is an extension of the combined encryption of systems such as PGP but with the distinction that the strength of encryption at each level is determined by the "value" of the data being transmitted. Non- symbolic fragmentation suppresses or destroys bit patterns in the transmitted data in what is essentially a bit-level transposition cipher but with unpredictable irregularly-sized fragments. Both technologies have applications outside the commercial and can be used in conjunction with other forms of encryption, being functionally orthogonal.
Resumo:
Network Virtualization is a key technology for the Future Internet, allowing the deployment of multiple independent virtual networks that use resources of the same basic infrastructure. An important challenge in the dynamic provision of virtual networks resides in the optimal allocation of physical resources (nodes and links) to requirements of virtual networks. This problem is known as Virtual Network Embedding (VNE). For the resolution of this problem, previous research has focused on designing algorithms based on the optimization of a single objective. On the contrary, in this work we present a multi-objective algorithm, called VNE-MO-ILP, for solving dynamic VNE problem, which calculates an approximation of the Pareto Front considering simultaneously resource utilization and load balancing. Experimental results show evidences that the proposed algorithm is better or at least comparable to a state-of-the-art algorithm. Two performance metrics were simultaneously evaluated: (i) Virtual Network Request Acceptance Ratio and (ii) Revenue/Cost Relation. The size of test networks used in the experiments shows that the proposed algorithm scales well in execution times, for networks of 84 nodes
Resumo:
A replicação de base de dados tem como objectivo a cópia de dados entre bases de dados distribuídas numa rede de computadores. A replicação de dados é importante em várias situações, desde a realização de cópias de segurança da informação, ao balanceamento de carga, à distribuição da informação por vários locais, até à integração de sistemas heterogéneos. A replicação possibilita uma diminuição do tráfego de rede, pois os dados ficam disponíveis localmente possibilitando também o seu acesso no caso de indisponibilidade da rede. Esta dissertação baseia-se na realização de um trabalho que consistiu no desenvolvimento de uma aplicação genérica para a replicação de bases de dados a disponibilizar como open source software. A aplicação desenvolvida possibilita a integração de dados entre vários sistemas, com foco na integração de dados heterogéneos, na fragmentação de dados e também na possibilidade de adaptação a várias situações. ABSTRACT: Data replication is a mechanism to synchronize and integrate data between distributed databases over a computer network. Data replication is an important tool in several situations, such as the creation of backup systems, load balancing between various nodes, distribution of information between various locations, integration of heterogeneous systems. Replication enables a reduction in network traffic, because data remains available locally even in the event of a temporary network failure. This thesis is based on the work carried out to develop an application for database replication to be made accessible as open source software. The application that was built allows for data integration between various systems, with particular focus on, amongst others, the integration of heterogeneous data, the fragmentation of data, replication in cascade, data format changes between replicas, master/slave and multi master synchronization.
Resumo:
Nel seguente documento di tesi lo scopo della tecnologia blockchain è quello di creare un’architettura sicura per gli scambi di utility token basata su un sistema distribuito, ovvero un insieme eterogeneo formato da più calcolatori che appare all’utilizzatore come un unico dispositivo. Questa tesi descrive la progettazione e realizzazione di una rete blockchain Stellar permissioned capace di gestire transazioni di token applicabile a innumerevoli contesti all’interno di un ecosistema di pagamenti e di servizi. La tecnologia blockchain offre molteplici vantaggi tra cui la possibilità di diminuire le commissioni delle transazioni rispetto agli attuali sistemi di pagamento. L’architettura dell’infrastruttura di rete progettata prevede, oltre ai nodi della rete blockchain vera e propria, altri server che si occupano in particolare di offrire un servizio di database di custodia delle chiavi, un servizio di load balancing ed un servizio di accesso ai dati presenti nella rete tramite chiamate API fornite dai nodi Horizon. Oltre a questi è stato creato un elemento ad-hoc, ovvero il software BTKL, utilizzato per semplificare la comunicazione con la blockchain e per incrementare la sicurezza di comunicazione con il database di custodia.
Resumo:
In the energy management of the isolated operation of small power system, the economic scheduling of the generation units is a crucial problem. Applying right timing can maximize the performance of the supply. The optimal operation of a wind turbine, a solar unit, a fuel cell and a storage battery is searched by a mixed-integer linear programming implemented in General Algebraic Modeling Systems (GAMS). A Virtual Power Producer (VPP) can optimal operate the generation units, assured the good functioning of equipment, including the maintenance, operation cost and the generation measurement and control. A central control at system allows a VPP to manage the optimal generation and their load control. The application of methodology to a real case study in Budapest Tech, demonstrates the effectiveness of this method to solve the optimal isolated dispatch of the DC micro-grid renewable energy park. The problem has been converged in 0.09 s and 30 iterations.
Resumo:
In competitive electricity markets it is necessary for a profit-seeking load-serving entity (LSE) to optimally adjust the financial incentives offering the end users that buy electricity at regulated rates to reduce the consumption during high market prices. The LSE in this model manages the demand response (DR) by offering financial incentives to retail customers, in order to maximize its expected profit and reduce the risk of market power experience. The stochastic formulation is implemented into a test system where a number of loads are supplied through LSEs.
Resumo:
An operational space map is an efficient tool to compare a large number of operational strategies to find an optimal choice of setpoints based on a multicriterion. Typically, such a multicriterion includes a weighted sum of cost of operation and effluent quality. Due to the relative high cost of aeration such a definition of optimality result in a relatively high fraction of the effluent total nitrogen in the form of ammonium. Such a strategy may however introduce a risk into operation because a low degree of ammonium removal leads to a low amount of nitrifiers. This in turn leads to a reduced ability to reject event disturbances, such as large variations in the ammonium load, drop in temperature, the presence of toxic/inhibitory compounds in the influent etc. Hedging is a risk minimisation tool, with the aim to "reduce one's risk of loss on a bet or speculation by compensating transactions on the other side" (The Concise Oxford Dictionary (1995)). In wastewater treatment plant operation hedging can be applied by choosing a higher level of ammonium removal to increase the amount of nitrifiers. This is a sensible way to introduce disturbance rejection ability into the multi criterion. In practice, this is done by deciding upon an internal effluent ammonium criterion. In some countries such as Germany, a separate criterion already applies to the level of ammonium in the effluent. However, in most countries the effluent criterion applies to total nitrogen only. In these cases, an internal effluent ammonium criterion should be selected in order to secure proper disturbance rejection ability.
Resumo:
This paper addresses the problem of energy resources management using modern metaheuristics approaches, namely Particle Swarm Optimization (PSO), New Particle Swarm Optimization (NPSO) and Evolutionary Particle Swarm Optimization (EPSO). The addressed problem in this research paper is intended for aggregators’ use operating in a smart grid context, dealing with Distributed Generation (DG), and gridable vehicles intelligently managed on a multi-period basis according to its users’ profiles and requirements. The aggregator can also purchase additional energy from external suppliers. The paper includes a case study considering a 30 kV distribution network with one substation, 180 buses and 90 load points. The distribution network in the case study considers intense penetration of DG, including 116 units from several technologies, and one external supplier. A scenario of 6000 EVs for the given network is simulated during 24 periods, corresponding to one day. The results of the application of the PSO approaches to this case study are discussed deep in the paper.