817 resultados para legality, improvisation, television, The Wire
Resumo:
The O91- Mesozooplankton dataset is based on samples collected in mid October-mid November 1991 at 20 stations in the South Aegean, the SE.Ionian Sea and in NW Levantine. Samples were collected at discrete layers (from the surface till 300m. These data are published. Sampling volume was estimated by multiplying the mouth area with the wire length. The entire sample (for deep layers) or aliquot of Taxon-specific mesozooplankton abundance (1/4) (for the upper layer) was analyzed under the binocular microscope. Copepod and cladoceran species were identified and enumerated; the other zooplankters were identified and enumerated at higher taxonomic level (commonly named as zooplankton groups). Taxonomic identification was done by I.Siokou-Frangou, E.Christou, and N.Fragopoulu, using the relevant taxonomic literature. The entire sample (for deep layers) or aliquot of Mesozooplankton total abundance (1/4) (for the upper layer) was analyzed under the binocular microscope. All zooplankters were enumerated.
Abundance of macrozooplankton in the north-eastern Black Sea during SESRU02 cruise in September 2008
Resumo:
The SESRU02_macrozooplankton dataset contains data collected in September 2008 at 15 stations located between 37°E and 39.5°E and between 42.4°N and 44.5°N in the north-eastern Black Sea. Samples were collected with a Ring net. Vertical tows of a Ring net, with mouth area 0.5 m**2, mesh size 400?m. Sample was taken from the layer 0-45 m. Towing speed: 0.8m/s. Samples were analyzed on board without preservation. Sampling volume was estimated by multiplying the mouth area by the wire length. The entire sample was analyzed on board. Macrozooplankton species were identified and enumerated.
Resumo:
The Gurile Dunarii 1980 dataset contains zooplankton data collected in May and September 1980 in 14 station allong 3 transect in front of the Danube Delta (45°05' - 44°45'N, 30°02'- 29°27'E). Zooplankton sampling was undertaken at 14 stations where samples were collected using a Juday closing net in the 0-10, 10-25 and 25-50m layer (depending also on the water masses). The dataset includes samples analysed for mesozooplankton species composition and abundance. Sampling volume was estimated by multiplying the mouth area with the wire length. Taxon-specific mesozooplankton abundance was count under microscope. Total abundance is the sum of the counted individuals. Total biomass Fodder, Rotifera , Ctenophora and Noctiluca was estimated using a tabel with wet weight for each species an stage.
Resumo:
The SESAME dataset contains mesozooplankton data collected during September 2008 in the North-West Black Sea (between 44°46' N and 42°29'N latitude and 28°64'E and 30°59'E longitude). Mesozooplankton sampling was undertaken at 9 stations where samples were collected using a Juday net in the 0-10, 10-25, 25-50, 50-100, 100-150, 150-200 m layer. The dataset includes 30 samples analysed for mesozooplankton species composition, species abundance and total biomass. Sampling volume was estimated by multiplying the mouth area with the wire length. The Taxon-specific mesozooplankton abundance sample or aliquots were analyzed under the binocular microscope. Taxonomic identification was done according to Morduhai-Boltovskii et al. 1968. Total biomass was estimated using a tabel with wet weight for each species an stage (Petipa method).
Resumo:
The Longitudinale 1987-1991dataset contains zooplankton data collected from May to October 1987-1991 in 14 station allong 2 transect paralel to the romanian littoral. Zooplankton sampling was undertaken at 14 stations where samples were collected using a Juday closing net in the 0-10, 10-20, 20-30 and 30-40 layer (depending also on the water masses). The dataset includes samples analysed for mesozooplankton species composition and abundance. Sampling volume was estimated by multiplying the mouth area with the wire length. Taxon-specific mesozooplankton abundance was count under microscope. Total abundance is the sum of the counted individuals. Total biomass Fodder, Rotifera , Ctenophora and Noctiluca was estimated using a tabel with wet weight for each species an stage.
Resumo:
The Gurile Dunarii 1977 dataset contains zooplankton data collected in April and September 1977 in 14 station allong 3 transect in front of the Danube Delta. Zooplankton sampling was undertaken at 14 stations where samples were collected using a Juday closing net in the 0-10, 10-20, 20-30, 30-40 and 40-50m layer (depending also on the water masses). The dataset includes samples analysed for mesozooplankton species composition and abundance. Sampling volume was estimated by multiplying the mouth area with the wire length. Taxon-specific mesozooplankton abundance was count under microscope. Total abundance is the sum of the counted individuals. Total biomass Fodder, Rotifera , Ctenophora and Noctiluca was estimated using a tabel with wet weight for each species an stage.
Resumo:
The SESRU01 macrozooplankton dataset contains data collected in April 2008 at 19 stations located between 37°E and 39.5°E and between 42.4°N and 44.5°N in the north-eastern Black Sea. Samples were collected with a Ring net. Vertical tows of a Ring net, with mouth area 0.5 m**2, mesh size 400µm. Sample was taken from the layer 0-40 m. Towing speed: 0.8m/s. Samples were analyzed on board without preservation. Sampling volume was estimated by multiplying the mouth area with the wire length. Macrozooplankton species were identified and enumerated.
Resumo:
The SESRU_02_mesozooplankton dataset contains data collected in September 2008 at 15 stations located between 37°E and 39.5°E and between 42.4°N and 44.5°N in the north-eastern Black Sea. Samples were collected with a Juday net. Juday net: Vertical tows of a closing Juday net, with mouth area 0.1 m**2, mesh size 180 µm. Samples were taken from different layers. Towing speed: 1m/s. Samples were preserved by a 4% formaldehyde sea water buffered solution. Sampling volume was estimated by multiplying the mouth area with the wire length. Integrated samples were taken from the lower boundary of the oxic zone to the surface, stratified samples were taken according to CTD-profiles: samples were taken from the following depth strata: 1) the upper mixed layer (UML); 2) the layer of high temperature gradients (from the upper boundary of thermocline to the depth of 8 deg C temperature); 3) cold Intermediate layer (CIL) - the layer with the T< 8 deg C; 4) from the depth of sigma theta = 15.8 (oxycline) to the lower boundary of CIL; 5) from the depth of sigma theta = 16.2 to the depth of sigma theta = 15.8. Samples were analysed for zooplankton species and stage composition and abundance. The entire sample or an aliquot (1/2 to ¼) was analyzed under the binocular microscope. Mesozooplankton species and stages were identified and enumerated; meroplankton were identified and enumerated at higher taxonomic level. Taxonomic identification was done at Shirshov Institute of Oceanology using the relevant taxonomic literature (Rose, 1933, Brodsky, 1950 and Internet resources).
Resumo:
The dataset is based on samples collected in the autumn of 2001 in the Western Black Sea in front of Bulgaria coast. The whole dataset is composed of 42 samples (from 19 stations of National Monitoring Grid) with data of mesozooplankton species composition abundance and biomass. Samples were collected in the layers 0-10, 0-20, 0-50, 10-25, 25-50, 50-100 and from bottom up to the surface at depths depending on water column stratification and the thermocline depth. Zooplankton samples were collected with vertical closing Juday net,diameter - 36cm, mesh size 150 µm. Tows were performed from surface down to bottom meters depths in discrete layers. Samples were preserved by a 4% formaldehyde sea water buffered solution. Sampling volume was estimated by multiplying the mouth area with the wire length. Mesozooplankton abundance: The collected material was analysed using the method of Domov (1959). Samples were brought to volume of 25-30 ml depending upon zooplankton density and mixed intensively until all organisms were distributed randomly in the sample volume. After that 5 ml of sample was taken and poured in the counting chamber which is a rectangle form for taxomomic identification and count. Large (> 1 mm body length) and not abundant species were calculated in whole sample. Counting and measuring of organisms were made in the Dimov chamber under the stereomicroscope to the lowest taxon possible. Taxonomic identification was done at the Institute of Oceanology by Kremena Stefanova using the relevant taxonomic literature (Mordukhay-Boltovskoy, F.D. (Ed.). 1968, 1969,1972). Taxon-specific abundance: The collected material was analysed using the method of Domov (1959). Samples were brought to volume of 25-30 ml depending upon zooplankton density and mixed intensively until all organisms were distributed randomly in the sample volume. After that 5 ml of sample was taken and poured in the counting chamber which is a rectangle form for taxomomic identification and count. Copepods and Cladoceras were identified and enumerated; the other mesozooplankters were identified and enumerated at higher taxonomic level (commonly named as mesozooplankton groups). Large (> 1 mm body length) and not abundant species were calculated in whole sample. Counting and measuring of organisms were made in the Dimov chamber under the stereomicroscope to the lowest taxon possible. Taxonomic identification was done at the Institute of Oceanology by Kremena Stefanova using the relevant taxonomic literature (Mordukhay-Boltovskoy, F.D. (Ed.). 1968, 1969,1972).
Resumo:
The "CoMSBlack92" dataset is based on samples collected in the summer of 1992 along the Bulgarian coast including coastal and open sea areas. The whole dataset is composed of 79 samples (28 stations) with data of zooplankton species composition, abundance and biomass. Sampling for zooplankton was performed from bottom up to the surface at standard depths depending on water column stratification and the thermocline depth. Zooplankton samples were collected with vertical closing Juday net,diameter - 36cm, mesh size 150 ?m. Tows were performed from surface down to bottom meters depths in discrete layers. Samples were preserved by a 4% formaldehyde sea water buffered solution. Sampling volume was estimated by multiplying the mouth area with the wire length. Sampling volume was estimated by multiplying the mouth area with the wire length. The collected material was analysed using the method of Domov (1959). Samples were brought to volume of 25-30 ml depending upon zooplankton density and mixed intensively until all organisms were distributed randomly in the sample volume. After that 5 ml of sample was taken and poured in the counting chamber which is a rectangle form for taxomomic identification and count. Large (> 1 mm body length) and not abundant species were calculated in whole sample. Counting and measuring of organisms were made in the Dimov chamber under the stereomicroscope to the lowest taxon possible. Taxonomic identification was done at the Institute of Oceanology by Asen Konsulov using the relevant taxonomic literature (Mordukhay-Boltovskoy, F.D. (Ed.). 1968, 1969,1972 ). The biomass was estimated as wet weight by Petipa, 1959 (based on species specific wet weight). Wet weight values were transformed to dry weight using the equation DW=0.16*WW as suggested by Vinogradov & Shushkina, 1987. Copepods and Cladoceras were identified and enumerated; the other mesozooplankters were identified and enumerated at higher taxonomic level (commonly named as mesozooplankton groups). Large (> 1 mm body length) and not abundant species were calculated in whole sample. The biomass was estimated as wet weight by Petipa, 1959 ussing standard average weight of each species in mg/m**3.
Resumo:
The "Hydroblack91" dataset is based on samples collected in the summer of 1991 and covers part of North-Western in front of Romanian coast and Western Black Sea (Bulgarian coasts) (between 43°30' - 42°10' N latitude and 28°40'- 31°45' E longitude). Mesozooplankton sampling was undertaken at 20 stations. The whole dataset is composed of 72 samples with data of zooplankton species composition, abundance and biomass. Samples were collected in discrete layers 0-10, 0-20, 0-50, 10-25, 25-50, 50-100 and from bottom up to the surface at depths depending on water column stratification and the thermocline depth. Zooplankton samples were collected with vertical closing Juday net,diameter - 36cm, mesh size 150 µm. Tows were performed from surface down to bottom meters depths in discrete layers. Samples were preserved by a 4% formaldehyde sea water buffered solution. Sampling volume was estimated by multiplying the mouth area with the wire length. Mesozooplankton abundance: The collected materia was analysed using the method of Domov (1959). Samples were brought to volume of 25-30 ml depending upon zooplankton density and mixed intensively until all organisms were distributed randomly in the sample volume. After that 5 ml of sample was taken and poured in the counting chamber which is a rectangle form for taxomomic identification and count. Large (> 1 mm body length) and not abundant species were calculated in whole sample. Counting and measuring of organisms were made in the Dimov chamber under the stereomicroscope to the lowest taxon possible. Taxonomic identification was done at the Institute of Oceanology by Asen Konsulov using the relevant taxonomic literature (Mordukhay-Boltovskoy, F.D. (Ed.). 1968, 1969,1972). The biomass was estimated as wet weight by Petipa, 1959 (based on species specific wet weight). Wet weight values were transformed to dry weight using the equation DW=0.16*WW as suggested by Vinogradov & Shushkina, 1987. Taxon-specific abundance: The collected material was analysed using the method of Domov (1959). Samples were brought to volume of 25-30 ml depending upon zooplankton density and mixed intensively until all organisms were distributed randomly in the sample volume. After that 5 ml of sample was taken and poured in the counting chamber which is a rectangle form for taxomomic identification and count. Copepods and Cladoceras were identified and enumerated; the other mesozooplankters were identified and enumerated at higher taxonomic level (commonly named as mesozooplankton groups). Large (> 1 mm body length) and not abundant species were calculated in whole sample. Counting and measuring of organisms were made in the Dimov chamber under the stereomicroscope to the lowest taxon possible. Taxonomic identification was done at the Institute of Oceanology by Asen Konsulov using the relevant taxonomic literature (Mordukhay-Boltovskoy, F.D. (Ed.). 1968, 1969,1972). The biomass was estimated as wet weight by Petipa, 1959 ussing standard average weight of each species in mg/m3. WW were converted to DW by equation DW=0.16*WW (Vinogradov ME, Sushkina EA, 1987).
Resumo:
The SESRU01_mesozooplankton dataset contains data collected in April 2008 at 19 stations located between 37°E and 39.5°E and between 42.4°N and 44.5°N in the north-eastern Black Sea. Samples were collected with a Juday net (mesh size 180 ?m, mouth area 0.1 m**2). Integrated samples were taken from the lower boundary of the oxic zone to the surface, stratified samples were taken according to CTD-profiles: samples were taken from the following depth strata: 1) the upper mixed layer (UML); 2) the layer of high temperature gradients (from the upper boundary of thermocline to the depth of 8 deg C temperature); 3) cold Intermediate layer (CIL) - the layer with the T< 8 deg C; 4) from the depth of sigma theta = 15.8 (oxycline) to the lower boundary of CIL; 5) from the depth of sigma theta = 16.2 to the depth of sigma theta = 15.8. Samples were analysed for zooplankton species and stage composition and abundance. Juday net: Vertical tows of a closing Juday net, with mouth area 0.1 m**2, mesh size 180µm. Samples were taken from different layers. Towing speed: 1m/s. Samples were preserved by a 4% formaldehyde sea water buffered solution. Sampling volume was estimated by multiplying the mouth area by the wire length. The entire sample or an aliquot (1/2 to1/4) was analyzed under the binocular microscope. Mesozooplankton species and stages were identified and enumerated; meroplankton were identified and enumerated at higher taxonomic level. Taxonomic identification was done at Shirshov Institute of Oceanology using the relevant taxonomic literature (Rose, 1933, Brodsky, 1950, and Internet resources).
Resumo:
The present dataset includes results of analysis of 227 zooplankton samples taken in and off the Sevastopol Bay in the Black Sea in 1976, 1979-1980, 1989-1990, 1995-1996 and 2002-2003. Exact coordinates for stations 1, 4, 5 and 6 are unknown and were calculated using Google-earth program. Data on Ctenophora Mnemiopsis leidyi and Beroe ovata are not included. Juday net: Vertical tows of a Juday net, with mouth area 0.1 m**2, mesh size 150µm. Tows were performed at layers. Towing speed: about 0.5 m/s. Samples were preserved by a 4% formaldehyde sea water buffered solution. Sampling volume was estimated by multiplying the mouth area with the wire length. The collected material was analysed using the method of portions (Yashnov, 1939). Samples were brought to volume of 50 - 100 ml depending upon zooplankton density and mixed intensively until all organisms were distributed randomly in the sample volume. After that 1 ml of sample was taken by calibrated Stempel-pipette. This operation was produced twice. If divergence between two examined subsamples was more than 30% one more subsample was examined. Large (> 1 mm body length) and not abundant species were calculated in 1/2, 1/4, 1/8, 1/16 or 1/32 part of sample. Counting and measuring of organisms were made in the Bogorov chamber under the stereomicroscope to the lowest taxon possible. Number of organisms per sample was calculated as simple average of two subsamples meanings multiplied on subsample volume. Total abundance of mesozooplankton was calculated as sum of taxon-specific abundances and total abundance of Copepods was calculated as sum of copepods taxon-specific abundances.
Resumo:
The Danubs 2001 dataset contains zooplankton data collected in March, June, September and October 2001 in 11 station allong 5 transect in front of the Romanian littoral. Zooplankton sampling was undertaken at 11 stations where samples were collected using a Juday closing net in the 0-10, 10-25, and 25-50m layer (depending also on the water masses). The dataset includes samples analysed for mesozooplankton species composition and abundance. Sampling volume was estimated by multiplying the mouth area with the wire length. Taxon-specific mesozooplankton abundance was count under microscope. Total abundance is the sum of the counted individuals. Total biomass Fodder, Rotifera , Ctenophora and Noctiluca was estimated using a tabel with wet weight for each species an stage.
Resumo:
The SHELF 1998 dataset contains zooplankton data collected in May, July and September 19978 allong 5 transect in front of the Romanian littoral. Zooplankton sampling was undertaken using a Juday closing net in the 0-10, 10-25, and 25-50m layer (depending also on the water masses). The dataset includes samples analysed for mesozooplankton species composition and abundance. Sampling volume was estimated by multiplying the mouth area with the wire length. Taxon-specific mesozooplankton abundance was count under microscope. Total abundance is the sum of the counted individuals. Total biomass Fodder, Rotifera , Ctenophora and Noctiluca was estimated using a tabel with wet weight for each species an stage.