853 resultados para learning machine
Resumo:
Mobile malware has continued to grow at an alarming rate despite on-going mitigation efforts. This has been much more prevalent on Android due to being an open platform that is rapidly overtaking other competing platforms in the mobile smart devices market. Recently, a new generation of Android malware families has emerged with advanced evasion capabilities which make them much more difficult to detect using conventional methods. This paper proposes and investigates a parallel machine learning based classification approach for early detection of Android malware. Using real malware samples and benign applications, a composite classification model is developed from parallel combination of heterogeneous classifiers. The empirical evaluation of the model under different combination schemes demonstrates its efficacy and potential to improve detection accuracy. More importantly, by utilizing several classifiers with diverse characteristics, their strengths can be harnessed not only for enhanced Android malware detection but also quicker white box analysis by means of the more interpretable constituent classifiers.
Resumo:
In this paper a multiple classifier machine learning methodology for Predictive Maintenance (PdM) is presented. PdM is a prominent strategy for dealing with maintenance issues given the increasing need to minimize downtime and associated costs. One of the challenges with PdM is generating so called ’health factors’ or quantitative indicators of the status of a system associated with a given maintenance issue, and determining their relationship to operating costs and failure risk. The proposed PdM methodology allows dynamical decision rules to be adopted for maintenance management and can be used with high-dimensional and censored data problems. This is achieved by training multiple classification modules with different prediction horizons to provide different performance trade-offs in terms of frequency of unexpected breaks and unexploited lifetime and then employing this information in an operating cost based maintenance decision system to minimise expected costs. The effectiveness of the methodology is demonstrated using a simulated example and a benchmark semiconductor manufacturing maintenance problem.
Resumo:
The in-line measurement of COD and NH4-N in the WWTP inflow is crucial for the timely monitoring of biological wastewater treatment processes and for the development of advanced control strategies for optimized WWTP operation. As a direct measurement of COD and NH4-N requires expensive and high maintenance in-line probes or analyzers, an approach estimating COD and NH4-N based on standard and spectroscopic in-line inflow measurement systems using Machine Learning Techniques is presented in this paper. The results show that COD estimation using Radom Forest Regression with a normalized MSE of 0.3, which is sufficiently accurate for practical applications, can be achieved using only standard in-line measurements. In the case of NH4-N, a good estimation using Partial Least Squares Regression with a normalized MSE of 0.16 is only possible based on a combination of standard and spectroscopic in-line measurements. Furthermore, the comparison of regression and classification methods shows that both methods perform equally well in most cases.
Resumo:
Process monitoring and Predictive Maintenance (PdM) are gaining increasing attention in most manufacturing environments as a means of reducing maintenance related costs and downtime. This is especially true in industries that are data intensive such as semiconductor manufacturing. In this paper an adaptive PdM based flexible maintenance scheduling decision support system, which pays particular attention to associated opportunity and risk costs, is presented. The proposed system, which employs Machine Learning and regularized regression methods, exploits new information as it becomes available from newly processed components to refine remaining useful life estimates and associated costs and risks. The system has been validated on a real industrial dataset related to an Ion Beam Etching process for semiconductor manufacturing.
Resumo:
Efficient identification and follow-up of astronomical transients is hindered by the need for humans to manually select promising candidates from data streams that contain many false positives. These artefacts arise in the difference images that are produced by most major ground-based time-domain surveys with large format CCD cameras. This dependence on humans to reject bogus detections is unsustainable for next generation all-sky surveys and significant effort is now being invested to solve the problem computationally. In this paper, we explore a simple machine learning approach to real-bogus classification by constructing a training set from the image data of similar to 32 000 real astrophysical transients and bogus detections from the Pan-STARRS1 Medium Deep Survey. We derive our feature representation from the pixel intensity values of a 20 x 20 pixel stamp around the centre of the candidates. This differs from previous work in that it works directly on the pixels rather than catalogued domain knowledge for feature design or selection. Three machine learning algorithms are trained (artificial neural networks, support vector machines and random forests) and their performances are tested on a held-out subset of 25 per cent of the training data. We find the best results from the random forest classifier and demonstrate that by accepting a false positive rate of 1 per cent, the classifier initially suggests a missed detection rate of around 10 per cent. However, we also find that a combination of bright star variability, nuclear transients and uncertainty in human labelling means that our best estimate of the missed detection rate is approximately 6 per cent.
Resumo:
Slow release drugs must be manufactured to meet target specifications with respect to dissolution curve profiles. In this paper we consider the problem of identifying the drivers of dissolution curve variability of a drug from historical manufacturing data. Several data sources are considered: raw material parameters, coating data, loss on drying and pellet size statistics. The methodology employed is to develop predictive models using LASSO, a powerful machine learning algorithm for regression with high-dimensional datasets. LASSO provides sparse solutions facilitating the identification of the most important causes of variability in the drug fabrication process. The proposed methodology is illustrated using manufacturing data for a slow release drug.