985 resultados para leaf nitrogen content
Resumo:
Community-level patterns of functional traits relate to community assembly and ecosystem functioning. By modelling the changes of different indices describing such patterns - trait means, extremes and diversity in communities - as a function of abiotic gradients, we could understand their drivers and build projections of the impact of global change on the functional components of biodiversity. We used five plant functional traits (vegetative height, specific leaf area, leaf dry matter content, leaf nitrogen content and seed mass) and non-woody vegetation plots to model several indices depicting community-level patterns of functional traits from a set of abiotic environmental variables (topographic, climatic and edaphic) over contrasting environmental conditions in a mountainous landscape. We performed a variation partitioning analysis to assess the relative importance of these variables for predicting patterns of functional traits in communities, and projected the best models under several climate change scenarios to examine future potential changes in vegetation functional properties. Not all indices of trait patterns within communities could be modelled with the same level of accuracy: the models for mean and extreme values of functional traits provided substantially better predictive accuracy than the models calibrated for diversity indices. Topographic and climatic factors were more important predictors of functional trait patterns within communities than edaphic predictors. Overall, model projections forecast an increase in mean vegetation height and in mean specific leaf area following climate warming. This trend was important at mid elevation particularly between 1000 and 2000 m asl. With this study we showed that topographic, climatic and edaphic variables can successfully model descriptors of community-level patterns of plant functional traits such as mean and extreme trait values. However, which factors determine the diversity of functional traits in plant communities remains unclear and requires more investigations.
Resumo:
The aim of this study was to use digital images acquired by cameras attached to a helium balloon to detect variation of the nutritional status in Brachiaria decumbens. The treatments consisted of five doses of nitrogen (0, 50, 100, 150 e 200kg ha-1) with six replications each, evaluated in a completely randomized statistical design. A remote sensing system composed of digital cameras and microcomputers was used for image acquisition, and a helium balloon lifted the cameras to the heights of 15, 20, 25 and 30m. A portable chlorophyll meter and analyses of leaf nitrogen content were used to make comparisons with data obtained by the remote sensing system. Data was acquired in two phases, in different climatic conditions. At the end of each phase, dry matter production was measured. Three vegetation indices were used to evaluate the detection of different nutritional status. The three indices were able to detect the effects of N doses. The indices constructed with the Green spectral band showed to be more efficient.
Resumo:
Onion (Allium cepa) was grown in the field within temperature gradient tunnels (providing about -2.5degreesC to +2.5degreesC from outside temperatures) maintained at either 374 or 532 mumol mol(-1) CO2. Plant leaf area was determined non-destructively at 7 day intervals until the time of bulbing in 12 combinations of temperature and CO2 concentration. Gas exchange was measured in each plot at the time of bulbing, and the carbohydrate content of the leaf (source) and bulb (sink) was determined. Maximum rate of leaf area expansion increased with mean temperature. Leaf area duration and maximum rate of leaf area expansion were not significantly affected by CO2. The light-saturated rates of leaf photosynthesis (A(sat)) were greater in plants grown at normal than at elevated CO2 concentrations at the same measurement CO2 concentration. Acclimation of photosynthesis decreased with an increase in growth temperature, and with an increase in leaf nitrogen content at elevated CO2. The ratio of intercellular to atmospheric CO2 (C-i/C-a ratio) was 7.4% less for plants grown at elevated compared with normal CO2. A(sat) in plants grown at elevated CO2 was less than in plants grown at normal CO2 when compared at the same C-i Hence, acclimation of photosynthesis was due both to stomatal acclimation and to limitations to biochemical CO2 fixation. Carbohydrate content of the onion bulbs was greater at elevated than at normal CO2. In contrast, carbohydrate content was less at elevated compared with normal CO2 in the leaf sections in which CO2 exchange was measured at the same developmental stage. Therefore, acclimation of photosynthesis in fully expanded onion leaves was detected despite the absence of localised carbohydrate accumulation in these field-grown crops.
Resumo:
Onion (Allium cepa) was grown in the field within temperature gradient tunnels (providing about -2.5 degrees C to +2.5 degrees C from outside temperatures) maintained at either 374 or 532 mumol mol (-1) CO2. Plant leaf area was determined non-destructively at 7 day intervals until the time of bulbing in 12 combinations of temperature and CO2 concentration. Gas exchange was measured in each plot at the time of bulbing, and the carbohydrate content of the leaf (source) and bulb (sink) was determined. Maximum rate of leaf area expansion increased with mean temperature. Leaf area duration and maximum rate of leaf area expansion were not significantly affected by CO2. The light-saturated rates of leaf photosynthesis (A(sat)) were greater in plants grown at normal than at elevated CO2 concentrations at the same measurement CO2 concentration. Acclimation of photosynthesis decreased with an increase in growth temperature, and with an increase in leaf nitrogen content at elevated CO2. The ratio of intercellular to atmospheric CO2 (C-i/C-a ratio) was 7.4% less for plants grown at elevated compared with normal CO2. A(sat) in plants grown at elevated CO2 was less than in plants grown at normal CO2 when compared at the same C-i Hence, acclimation of photosynthesis was due both to stomatal acclimation and to limitations to biochemical CO2 fixation. Carbohydrate content of the onion bulbs was greater at elevated than at normal CO2. In contrast, carbohydrate content was less at elevated compared with normal CO2 in the leaf sections in which CO2 exchange was measured at the same developmental stage. Therefore, acclimation of photosynthesis in fully expanded onion leaves was detected despite the absence of localised carbohydrate accumulation in these field-grown crops.
Resumo:
We assessed the potential for using optical functional types as effective markers to monitor changes in vegetation in floodplain meadows associated with changes in their local environment. Floodplain meadows are challenging ecosystems for monitoring and conservation because of their highly biodiverse nature. Our aim was to understand and explain spectral differences among key members of floodplain meadows and also characterize differences with respect to functional traits. The study was conducted on a typical floodplain meadow in UK (MG4-type, mesotrophic grassland type 4, according to British National Vegetation Classification). We compared two approaches to characterize floodplain communities using field spectroscopy. The first approach was sub-community based, in which we collected spectral signatures for species groupings indicating two distinct eco-hydrological conditions (dry and wet soil indicator species). The other approach was “species-specific”, in which we focused on the spectral reflectance of three key species found on the meadow. One herb species is a typical member of the MG4 floodplain meadow community, while the other two species, sedge and rush, represent wetland vegetation. We also monitored vegetation biophysical and functional properties as well as soil nutrients and ground water levels. We found that the vegetation classes representing meadow sub-communities could not be spectrally distinguished from each other, whereas the individual herb species was found to have a distinctly different spectral signature from the sedge and rush species. The spectral differences between these three species could be explained by their observed differences in plant biophysical parameters, as corroborated through radiative transfer model simulations. These parameters, such as leaf area index, leaf dry matter content, leaf water content, and specific leaf area, along with other functional parameters, such as maximum carboxylation capacity and leaf nitrogen content, also helped explain the species’ differences in functional dynamics. Groundwater level and soil nitrogen availability, which are important factors governing plant nutrient status, were also found to be significantly different for the herb/wetland species’ locations. The study concludes that spectrally distinguishable species, typical for a highly biodiverse site such as a floodplain meadow, could potentially be used as target species to monitor vegetation dynamics under changing environmental conditions.
Resumo:
The aim of this study was to evaluate the nitrogen topdressing influence in common bean irrigated (winter-spring), in the first year of no tillage implementation. The experimental design was split-plot with three replications in randomized blocks. The plots were formed by three types of ground cover, corn-grain, corn-grain intercropped with Brachiaria ruziziensis and only B. ruziziensis. The subplots were formed by five doses of nitrogen topdressing (0, 40, 80, 120 and 160 kg ha(-1)), using urea as nitrogen source. It was determined the dry mass of residue present as ground cover, the full flowering time, the leaf nitrogen content, the 100 grains mass, the grain yield, the processing income, the chemical soil properties and economic analysis of common bean grain yield. It was found the common bean grain productivity in succession to corn-grain was positively influenced by nitrogen fertilization, showing it is economically viable only when given 160 kg ha(-1) of nitrogen and the intercropping corn-grain and B. ruziziensis use is the best option when the common bean is sown in succession.
Resumo:
O nitrogênio é o elemento mais utilizado pela cultura do café e seu manejo é extremamente importante devido às perdas especialmente em épocas chuvosas. O trabalho foi desenvolvido em Argissolo Vermelho-Amarelo, na região de Sud Mennucci (SP), e teve como objetivo avaliar o efeito de diferentes doses e épocas de aplicação de nitrogênio sobre o teor de clorofila e de N nas folhas do cafeeiro, e calcular correlações com a produtividade. O delineamento experimental foi em blocos ao acaso com quatro repetições. Os tratamentos obedeceram o esquema fatorial 5 x 3, constituído pela combinação de cinco doses de N (0, 50, 150, 250 e 350 kg ha-1) aplicados na forma de uréia em três épocas de aplicação (aplicação única em dezembro; duas aplicações: parceladas em novembro e janeiro e três aplicações: parceladas em novembro, dezembro e janeiro). Avaliaram-se os teores de clorofila e nitrogênio das folhas durante a frutificação e a colheita. A concentração de clorofila correlacionou-se positivamente com o teor de nitrogênio nas folhas e a produção de grãos se ajustou a uma função quadrática com as doses de N aplicadas, na qual a dose 210 kg ha-1 promoveu a máxima produção; a estimativa do teor de clorofila foi promissora para detecção de possíveis deficiências de nitrogênio.
Resumo:
The relative chlorophyll determination is used to predict the need for nitrogen fertilization aiming to increase production in various cultures. The objective of this study was to evaluate the soil nitrogen dose response added to the soil via fertigation in radish production and the relation between chlorophyll and cultivar Redondo Vermelho leaf nitrogen content. Transverse diameter of root, leaf area, green index, leaf N contents, shoots (stem) production, number of commercial and noncommercial roots, and the total commercial mass roots were evaluated. The N doses didn't interfere in the radish production and the readings taken with portable chlorophyll meter are not very accurate in ascertaining the level of N on radish plant growth.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The objective of this work was to study the intercropping of Brachiaria brizantha. Marandu with soybeans. The experiment has been planted in a 3 year prevailing area with no-tillage, in eutrophic Oxisol at Maripa - PR. The experimental design was a randomized block with five replications. For the forage study, four treatments were performed which consisted of seeding times brachiaria [early ( seven days before planting soybeans) joint (same day of soybean planting) and after (at stages V-3 and R-1 culture)] intercropping with soybean. To study the yield and crude protein and oil levels of the grain were adopted six treatments, which consisted of sowing dates of capim Marandu [early (seven days before planting soybeans), joint (same day of soybean planting) after (V-3, R-1 and R-5 soybean) and in single culture (single)]. The forager higher productivity of dry matter occurs with early sowing, however, the greatest reduction in soybean yield also occurs in this case. The sowing of Brachiaria until R-5 soy has no influence on the nutritional value of the forage. The intercropped of soybean with Brachiaria brizantha. Marandu has no impact on the leaf Nitrogen content, oil content and enzyme activity of soybean peroxidase. The highest yield of soybeans occurs when it is grown single or Brachiaria is sown in stage R-5. The crude protein content of soybean grain is reduced when brachiaria seeding is early or together with soybeans compared to single culture.
Resumo:
Pós-graduação em Agronomia - FEIS
Resumo:
In questo lavoro sono state analizzate diverse strategie di recupero di una cava dismessa situata presso la località Colombara (Monte San Pietro, Bologna). Su questi terreni sono state condotte tre prove, costituite da diverse parcelle nelle quali sono stati adottati differenti trattamenti. Sono state svolte analisi di tipo quantitativo del suolo e della parte epigea delle specie arbustive e arboree, focalizzandosi sull'azoto (N totale, ammoniacale, nitrico, e firma isotopica) e sulla sostanza organica del suolo. Inoltre è stata effettuata un'indagine qualitativa della composizione floristica. Scopo della tesi è quello di individuare le strategie più efficaci per un recupero di suoli degradati. Non sempre a trattamenti iniziali migliori corrispondono i migliori risultati portando a conclusioni apparentemente controintuitive a cui si è cercato di dare risposta.
Resumo:
Salt marshes are coastal ecosystem in the upper intertidal zone between internal water and sea and are widely spread throughout Italy, from Friuli Venezia Giulia, in the North, to Sicily, in the South. These delicate environments are threatened by eutrophication, habitat conversion (for land reclaiming or agriculture) and climate change impacts such as sea level rise. The objectives of my thesis were to: 1) analyse the distribution and biomass of the perennial native cordgrass Spartina maritima (one of the most relevant foundation species in the low intertidal saltmarsh vegetation in the study region) at 7 sites along the Northern Adriatic coast and relate it to critical environmental parameters and 2) to carry out a nutrient manipulation experiment to detect nutrient enrichment effects on S. maritima biomass and vegetation characteristics. The survey showed significant differences among sites in biological response variables - i.e., live belowground, live aboveground biomass, above:belowground (R:S) biomass ratio, % cover, average height and stem density – which were mainly related to differences in nitrate, nitrite and phosphate contents in surface water. Preliminary results from the experiment (which is still ongoing) showed so far no significant effects of nutrient enrichment on live aboveground and belowground biomass, R:S ratio, leaf %Carbon, average height, stem density and random shoot height; however, a significantly higher (P=0.018) increase in leaf %Nitrogen content in treated plots indicated that nutrient uptake had occurred.
Resumo:
Morphological, anatomical and physiological plant and leaf traits of A. distorta, an endemic species of the Central Apennines on the Majella Massif, growing at 2,675 m a.s.l, were analyzed. The length of the phenological cycle starts immediately after the snowmelt at the end of May, lasting 128 ± 10 days. The low A. distorta height (Hmax= 64 ± 4 mm) and total leaf area (TLA= 38 ± 9 cm2) associated to a high leaf mass area (LMA =11.8±0.6 mg cm−2) and a relatively high leaf tissue density (LTD = 124.6±14.3 mg cm−3) seem to be adaptive traits to the stress factors of the environment where it grows. From a physiological point of view, the high A. distorta photosynthetic rates (PN =19.6 ± 2.3 µmol m−2 s−1) and total chlorophyll content (Chla+b = 0.88 ± 0.13 mg g−1) in July are justified by the favorable temperature. PN decreases by 87% in September at the beginning of plant senescence. Photosynthesis and leaf respiration (RD) variations allow A. distorta to maintain a positive carbon balance during the growing season becoming indicative of the efficiency of plant carbon use. The results could be an important tool for conservation programmes of the A. distorta wild populations.
Resumo:
The Atlantic Forest on the slopes of Serra do Mar around Cubatão (São Paulo, Brazil) has been affected by massive emissions of pollutants from the local growing industrial complex. The effects of air pollution on the amounts of leaf nitrogen, total soluble phenols and total tannins of Tibouchina pulchra Cogn., a common species in the area of Cubatão, were investigated, as well as the possible influence of the altered parameters on the leaf area damaged by herbivores. Fully expanded leaves were collected at two sites: the valley of Pilões river (VP), characterized by a vegetation virtually not affected by air pollution and taken as a reference; and valley of Mogi river (VM), close to the core region of the industrial complex, and severely affected by air pollution. No differences were observed for any parameters between samples collected in the summer and winter in both sites. On the other hand, compared to VP, individuals growing in VM presented higher amounts of nitrogen and lower amounts of total soluble phenols and total tannins, as well as higher percentages of galls per leaf and higher leaf area lost to herbivores. Regression analysis revealed that the increase in leaf area lost to herbivores can be explained by the increase of the content of nitrogen and decrease in the contents of total soluble phenols and total tannins. Although significant, the coefficients of explanation found were low for all analyses, suggesting that other biotic or abiotic factors are likely to influence leaf attack by herbivores.