281 resultados para launching sideline
Resumo:
The first observations of solar X-rays date back to late 1940 s. In order to observe solar X-rays the instruments have to be lifted above the Earth s atmosphere, since all high energy radiation from the space is almost totally attenuated by it. This is a good thing for all living creatures, but bad for X-ray astronomers. Detectors observing X-ray emission from space must be placed on-board satellites, which makes this particular discipline of astronomy technologically and operationally demanding, as well as very expensive. In this thesis, I have focused on detectors dedicated to observing solar X-rays in the energy range 1-20 keV. The purpose of these detectors was to measure solar X-rays simultaneously with another X-ray spectrometer measuring fluorescence X-ray emission from the Moon surface. The X-ray fluorescence emission is induced by the primary solar X-rays. If the elemental abundances on the Moon were to be determined with fluorescence analysis methods, the shape and intensity of the simultaneous solar X-ray spectrum must be known. The aim of this thesis is to describe the characterization and operation of our X-ray instruments on-board two Moon missions, SMART-1 and Chandrayaan-1. Also the independent solar science performance of these two almost similar X-ray spectrometers is described. These detectors have the following two features in common. Firstly, the primary detection element is made of a single crystal silicon diode. Secondly, the field of view is circular and very large. The data obtained from these detectors are spectra with a 16 second time resolution. Before launching an instrument into space, its performance must be characterized by ground calibrations. The basic operation of these detectors and their ground calibrations are described in detail. Two C-flares are analyzed as examples for introducing the spectral fitting process. The first flare analysis shows the fit of a single spectrum of the C1-flare obtained during the peak phase. The other analysis example shows how to derive the time evolution of fluxes, emission measures (EM) and temperatures through the whole single C4 flare with the time resolution of 16 s. The preparatory data analysis procedures are also introduced in detail. These are required in spectral fittings of the data. A new solar monitor design equipped with a concentrator optics and a moderate size of field of view is also introduced.
Resumo:
The object of study in this thesis is Finnish skiing culture and Alpine skiing in particular from the point of view of ethnology. The objective is to clarify how, when, why and by what routes Alpine skiing found its way to Finland. What other phenomena did it bring forth? The objective is essentially linked to the diffusion of modern sports culture to Finland. The introduction of Alpine skiing to Finland took place at a time when skiing culture was changing: flat terrain skiing was abandoned in favour of cross-country skiing in the early decades of the 20th century, and new techniques and equipment made skiing a much more versatile sport. The time span of the study starts from the late 19th century and ends in the mid-20th century. The spatial focus is in Finland. People and communities formed through their actions are core elements in the study of sports and physical activity. Organizations tend to raise themselves into influential actors in the field of physical culture even if active individuals work in their background. Original archive documents and publications of sports organizations are central source material for this thesis, complemented by newspapers and sports magazines as well as photographs and films on early Alpine skiing in Finland. Ever since their beginning in the late 19th century skiing races in Finland had mostly taken place on flat terrain or sea ice. Skiing in broken cross-country terrain made its breakthrough in the 1920 s, at a time when modern skiing techniques were introduced in instruction manuals. In the late 1920 s the Finnish Women s Physical Education Association (SNLL) developed unconventional forms of pedagogical skiing instruction. They abandoned traditional Finnish flat terrain skiing and boldly looked for influences abroad, which caused friction between the leaders of the women s sports movement and the (male) leaders of the central skiing organization. SNLL was instrumental in launching winter tourism in Finnish Lapland in 1933. The Finnish Tourism Society, the State Railways and sports organizations worked in close co-operation to instigate a boom in tourism, which culminated in the inauguration of a tourist hotel at Pallastunturi hill in the winter of 1938. Following a Swedish model, fell-skiing was developed as a domestic counterpart to Alpine skiing as practiced in Central Europe. The first Finnish skiing resorts were built at sites of major cross-country skiing races. Inspired by the slope at Bad Grankulla health spa, the first slalom skiing races and fell-skiing, slalom enthusiasts began to look for purpose-built sites to practice turn technique. At first they would train in natural slopes but in the late 1930 s new slopes were cleared for slalom races and recreational skiing. The building of slopes and ski lifts and the emergence of organized slalom racing competitions gradually separated Alpine skiing from the old fell-skiing. After the Second World War fell-skiing was transformed into ski trekking on marked courses. At the same time Alpine skiing also parted ways with cross-country skiing to become a sport of its own. In the 1940 s and 1950 s Finnish Alpine skiing was almost exclusively a competitive sport. The specificity of Alpine skiing was enhanced by rapid development of equipment: the new skis, bindings and shoes could only be used going downhill.
Resumo:
We demonstrate launching of laser-cooled Yb atoms in a cold atomic fountain. Atoms in a collimated thermal beam are first cooled and captured in a magneto-optical trap (MOT) operating on the strongly allowed S-1(0) -> P-1(1) transition at 399 nm (blue line). They are then transferred to a MOT on the weakly allowed S-1(0) -> P-3(1) transition at 556 nm (green line). Cold atoms from the green MOT are launched against gravity at a velocity of around 2.5 m/s using a pair of green beams. We trap more than 107 atoms in the blue MOT and transfer up to 70% into the green MOT. The temperature for the odd isotope Yb-171 is similar to 1 mK in the blue MOT, and reduces by a factor of 40 in the green MOT.
Resumo:
Multiwavelength data indicate that the X-ray-emitting plasma in the cores of galaxy clusters is not cooling catastrophically. To a large extent, cooling is offset by heating due to active galactic nuclei (AGNs) via jets. The cool-core clusters, with cooler/denser plasmas, show multiphase gas and signs of some cooling in their cores. These observations suggest that the cool core is locally thermally unstable while maintaining global thermal equilibrium. Using high-resolution, three-dimensional simulations we study the formation of multiphase gas in cluster cores heated by collimated bipolar AGN jets. Our key conclusion is that spatially extended multiphase filaments form only when the instantaneous ratio of the thermal instability and free-fall timescales (t(TI)/t(ff)) falls below a critical threshold of approximate to 10. When this happens, dense cold gas decouples from the hot intracluster medium (ICM) phase and generates inhomogeneous and spatially extended Ha filaments. These cold gas clumps and filaments ``rain'' down onto the central regions of the core, forming a cold rotating torus and in part feeding the supermassive black hole. Consequently, the self-regulated feedback enhances AGN heating and the core returns to a higher entropy level with t(TI)/t(ff) > 10. Eventually, the core reaches quasi-stable global thermal equilibrium, and cold filaments condense out of the hot ICM whenever t(TI)/t(ff) less than or similar to 10. This occurs despite the fact that the energy from AGN jets is supplied to the core in a highly anisotropic fashion. The effective spatial redistribution of heat is enabled in part by the turbulent motions in the wake of freely falling cold filaments. Increased AGN activity can locally reverse the cold gas flow, launching cold filamentary gas away from the cluster center. Our criterion for the condensation of spatially extended cold gas is in agreement with observations and previous idealized simulations.
Resumo:
TCP attacks are the major problem faced by Mobile Ad hoc Networks (MANETs) due to its limited network and host resources. Attacker traceback is a promising solution which allows a victim to identify the exact location of the attacker and hence enables the victim to take proper countermeasure near attack origins, for forensics and to discourage attackers from launching the attacks. However, attacker traceback in MANET is a challenging problem due to dynamic network topology, limited network and host resources such as memory, bandwidth and battery life. We introduce a novel method of TCP attacker Identification in MANET using the Traffic History - MAITH. Based on the comprehensive evaluation based on simulations, we showed that MAITH can successfully track down the attacker under diverse mobile multi-hop network environment with low communication, computation, and memory overhead.
Resumo:
We demonstrate the launching of laser-cooled Yb atoms in a continuous atomic beam. The continuous cold beam has significant advantages over the more-common pulsed fountain, which was also demonstrated by us recently. The cold beam is formed in the following steps: i) atoms from a thermal beam are first Zeeman-slowed to a small final velocity; ii) the slowed atoms are captured in a two-dimensional magneto-optic trap (2D-MOT); and iii) atoms are launched continuously in the vertical direction using two sets of moving-molasses beams, inclined at +/- 15 degrees to the vertical. The cooling transition used is the strongly allowed S-1(0) -> P-1(1) transition at 399 nm. We capture about 7x10(6) atoms in the 2D-MOT, and then launch them with a vertical velocity of 13m/s at a longitudinal temperature of 125(6) mK. Copyright (C) EPLA, 2013
Resumo:
The growing number of applications and processing units in modern Multiprocessor Systems-on-Chips (MPSoCs) come along with reduced time to market. Different IP cores can come from different vendors, and their trust levels are also different, but typically they use Network-on-Chip (NoC) as their communication infrastructure. An MPSoC can have multiple Trusted Execution Environments (TEEs). Apart from performance, power, and area research in the field of MPSoC, robust and secure system design is also gaining importance in the research community. To build a secure system, the designer must know beforehand all kinds of attack possibilities for the respective system (MPSoC). In this paper we survey the possible attack scenarios on present-day MPSoCs and investigate a new attack scenario, i.e., router attack targeted toward NoC architecture. We show the validity of this attack by analyzing different present-day NoC architectures and show that they are all vulnerable to this type of attack. By launching a router attack, an attacker can control the whole chip very easily, which makes it a very serious issue. Both routing tables and routing logic-based routers are vulnerable to such attacks. In this paper, we address attacks on routing tables. We propose different monitoring-based countermeasures against routing table-based router attack in an MPSoC having multiple TEEs. Synthesis results show that proposed countermeasures, viz. Runtime-monitor, Restart-monitor, Intermediate manager, and Auditor, occupy areas that are 26.6, 22, 0.2, and 12.2 % of a routing table-based router area. Apart from these, we propose Ejection address checker and Local monitoring module inside a router that cause 3.4 and 10.6 % increase of a router area, respectively. Simulation results are also given, which shows effectiveness of proposed monitoring-based countermeasures.
Resumo:
A numerical study on shocked flows induced by a supersonic projectile moving in tubes is described in this paper. The dispersion-controlled scheme was adopted to solve the Euler equations implemented with moving boundary conditions. Four test cases were carried out in the present study: the first two cases are for validation of numerical algorithms and verification of moving boundary conditions, and the last two cases are for investigation into wave dynamic processes induced by the projectile moving at Mach numbers of M-p = 2.0 and 2.4, respectively, in a short time duration after the projectile was released from a shock tube into a big chamber. It was found that complex shock phenomena exist in the shocked flow, resulting from shock-wave/projectile interaction, shock-wave focusing, shock-wave reflection and shock-wave/contact-surface interactions, from which turbulence and vortices may be generated. This is a fundamental study on complex shock phenomena, and is also a useful investigation for understanding on shocked flows in the ram accelerator that may provide a highly efficient facility for launching hypersonic projectiles.
Resumo:
Some relevant components of selection program theory and implementation are reviewed. This includes pedigree recording, genetic evaluation, balancing genetic gains and genetic diversity and tactical integration of key issues. Lessons learned are briefly described illustrating how existing method and tools can be useful when launching a program in a novel species, and yet highlighting the importance of proper understanding and custom application according to the biology and environments of that species.
Resumo:
Hypervelocity impact of meteoroids and orbital debris poses a serious and growing threat to spacecraft. To study hypervelocity impact phenomena, a comprehensive ensemble of real-time concurrently operated diagnostics has been developed and implemented in the Small Particle Hypervelocity Impact Range (SPHIR) facility. This suite of simultaneously operated instrumentation provides multiple complementary measurements that facilitate the characterization of many impact phenomena in a single experiment. The investigation of hypervelocity impact phenomena described in this work focuses on normal impacts of 1.8 mm nylon 6/6 cylinder projectiles and variable thickness aluminum targets. The SPHIR facility two-stage light-gas gun is capable of routinely launching 5.5 mg nylon impactors to speeds of 5 to 7 km/s. Refinement of legacy SPHIR operation procedures and the investigation of first-stage pressure have improved the velocity performance of the facility, resulting in an increase in average impact velocity of at least 0.57 km/s. Results for the perforation area indicate the considered range of target thicknesses represent multiple regimes describing the non-monotonic scaling of target perforation with decreasing target thickness. The laser side-lighting (LSL) system has been developed to provide ultra-high-speed shadowgraph images of the impact event. This novel optical technique is demonstrated to characterize the propagation velocity and two-dimensional optical density of impact-generated debris clouds. Additionally, a debris capture system is located behind the target during every experiment to provide complementary information regarding the trajectory distribution and penetration depth of individual debris particles. The utilization of a coherent, collimated illumination source in the LSL system facilitates the simultaneous measurement of impact phenomena with near-IR and UV-vis spectrograph systems. Comparison of LSL images to concurrent IR results indicates two distinctly different phenomena. A high-speed, pressure-dependent IR-emitting cloud is observed in experiments to expand at velocities much higher than the debris and ejecta phenomena observed using the LSL system. In double-plate target configurations, this phenomena is observed to interact with the rear-wall several micro-seconds before the subsequent arrival of the debris cloud. Additionally, dimensional analysis presented by Whitham for blast waves is shown to describe the pressure-dependent radial expansion of the observed IR-emitting phenomena. Although this work focuses on a single hypervelocity impact configuration, the diagnostic capabilities and techniques described can be used with a wide variety of impactors, materials, and geometries to investigate any number of engineering and scientific problems.
Resumo:
[ES] La prctica tradicional del boca-oreja, natural desde hace aos como modo de publicidad efectiva sin recurrir a grandes inversiones ni contrataciones en medios masivos se ha convertido en una nueva posibilidad de marketing con la llegada de las nuevas tecnologas e Internet. As ha aparecido una nueva estrategia de marketing que consiste en explotar las redes sociales preexistentes para producir incrementos exponenciales en conocimiento de marca, denominada marketing viral. El efecto "boca-oreja online" que genera es una herramienta poderosa para las empresas, aunque su verdadero potencial est an por descubrir. El objetivo del presente trabajo de investigacin es analizar este fenmeno a travs de una amplia revisin bibliogrfica del trmino, as como un estudio emprico consistente en una entrevista en profundidad realizada a una muestra de importantes empresas espaolas. Los resultados indican que el marketing viral puede ser empleado para el beneficio, tanto de grandes empresas con grandes presupuestos, como de pequeos negocios. Las experiencias exitosas de su utilizacin demuestran que, cuando se usa integrado en el resto de estrategias comerciales de la empresa, puede mejorar la recomendacin de la marca e incrementar su notoriedad en el mercado. El marketing viral puede ser ventajoso a la hora de lanzar un nuevo producto al mercado, sin embargo, la efectividad y la medicin de las campaas son vistas por muchos acadmicos y profesionales como un punto dbil de la estrategia.
Resumo:
Este trabalho tem por objetivo contribuir para a melhoria do gerenciamento do processo construtivo de execuo de pontes e viadutos em estruturas segmentadas pr-moldadas protendidas, construdas em balanos sucessivos, com base em uma anlise das metodologias adotadas e verificando a viabilidade de implantao de um modelo nos processos de gesto que utilizam mtodos industriais para execuo de obras de arte especiais. A partir da reviso da literatura tcnica disponvel e tomando como referncia os mtodos construtivos utilizados em dois canteiros de obras distintos, analisa-se a metodologia de gerenciamento construtivo adotada visando ao aperfeioamento do processo de fabricao e montagem, e consequente reduo dos custos, desperdcios e prazos. Dentre os vrios aspectos observados, ressalta-se a importncia de se utilizar uma ferramenta de gerenciamento de projeto nas obras de pontes pr-moldadas, por se mostrarem um processo industrializado, repetitivo e com funcionamento similar a uma unidade fabril. Neste contexto, esta pesquisa visa fornecer subsdios para que se possam estabelecer diretrizes para uma melhor integrao do projeto com a construo e conseqente melhoria da execuo nos canteiros de obras.
Resumo:
A cidade do Rio de Janeiro foi eleita sede dos Jogos Olmpicos e Paraolmpicos de 2016 e so previstos impactos significativos em investimento e na gerao de emprego, atrelados a isto existe a preocupao com as questes ambientais e a sustentabilidade do evento. No dossi de candidatura do Rio de Janeiro a sede dos Jogos Olmpicos de 2016, existia o compromisso com a gesto dos resduos slidos. As grandes linhas de aes foram definidas quando do lanamento da candidatura do Rio de Janeiro a sede do evento, fato este que se concretizou em 02 de outubro de 2009. A gesto dos resduos para 2016 ainda carente de informaes quantitativas de sua gerao, das necessidades de adaptaes das instalaes para o perodo de realizao do evento, bem como da definio de metas para que a gesto dos resduos devidamente alinhadas com os preceitos do desenvolvimento sustentvel. O objetivo deste estudo avaliar sub o conceito de desenvolvimento sustentvel a gesto de resduos slidos durante a realizao dos Jogos Olmpicos de 2016 na cidade do Rio de Janeiro. A metodologia consiste no levantamento histrico dos Jogos Olmpicos com especial detalhamento nas questes ligadas ao conceito de desenvolvimento sustentvel e gesto de resduos, anlise dos Jogos Pan-americanos do Rio de Janeiro, levantamento em campo da preparao dos Jogos Olmpicos de Londres, observaes em campo na cidade do Rio de Janeiro e a anlise de dados para o clculo da estimativa de gerao de resduos durante a realizao dos Jogos de 2016. As comparaes com outros eventos demonstraram semelhanas e diferenas com os Jogos Olmpicos de 2016 e possibilitou a apresentao de proposies para a gesto de resduos slidos. A projeo de gerao de resduos durante o evento significativa e aponta a necessita de ateno para potencializar as aes como coleta seletiva, reciclagem e compostagem. So indicados estudos futuros sobre a gesto dos resduos, em especial da construo civil durante as obras das futuras instalaes, algumas delas j em curso.