931 resultados para k-Means algorithm


Relevância:

80.00% 80.00%

Publicador:

Resumo:

In the present paper we compare clustering solutions using indices of paired agreement. We propose a new method - IADJUST - to correct indices of paired agreement, excluding agreement by chance. This new method overcomes previous limitations known in the literature as it permits the correction of any index. We illustrate its use in external clustering validation, to measure the accordance between clusters and an a priori known structure. The adjusted indices are intended to provide a realistic measure of clustering performance that excludes agreement by chance with ground truth. We use simulated data sets, under a range of scenarios - considering diverse numbers of clusters, clusters overlaps and balances - to discuss the pertinence and the precision of our proposal. Precision is established based on comparisons with the analytical approach for correction specific indices that can be corrected in this way are used for this purpose. The pertinence of the proposed correction is discussed when making a detailed comparison between the performance of two classical clustering approaches, namely Expectation-Maximization (EM) and K-Means (KM) algorithms. Eight indices of paired agreement are studied and new corrected indices are obtained.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Actualmente, os sistemas de localização são uma área em forte expansão sendo que para espaços exteriores existe uma grande variedade de sistemas de localização enquanto que para espaços interiores as soluções são mais escassas. Este trabalho apresenta o estudo e implementação de um sistema de localização indoor baseado no protocolo ZigBee, utilizando a informação da intensidade de sinal recebido (RSSI - Received Signal Strength Indication). Para a realização deste projecto foi necessário iniciar uma pesquisa mais pormenorizada do protocolo ZigBee. O dispositivo móvel a ser localizado é o módulo XBee Serie 2 que se baseia no mesmo protocolo. Posto isto, foi necessário efectuar um estudo sobre sistemas de localização existentes e analisar as técnicas de localização utilizadas para ambientes interiores. Desta forma utiliza-se neste projecto uma técnica que consiste na análise de fingerprinting, onde é criado um mapa com os valores RSSI para diferentes coordenadas do espaço físico. As intensidades de sinal recebido são relativas a dispositivos XBee instalados em pontos fixos de referência. Para calcular a localização do dispositivo móvel é utilizado o algoritmo K-NN (K- Nearest Neighbors) que permite estimar a posição aproximada do dispositivo móvel. Por último é descrito todo o desenvolvimento do projecto assim como a apresentação e discussão de resultados.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Com base no modelo de Resposta à Intervenção (RtI), este estudo centrouse em três objetivos: construir um instrumento vocacionado para a determinação do nível de competências fundamentais, do 1º ao 6º anos, na disciplina de Matemática; avaliar o valor preditivo do instrumento sobre a necessidade de intervenção; examinar o efeito de uma intervenção planeada com base na avaliação diagnóstica desse instrumento. Para dar resposta ao primeiro e segundo objetivos foram consideradas duas amostras de conveniência: a primeira, constituída por 5 docentes, avaliou a versão teste do instrumento e a segunda, constituída por 6 docentes, avaliou a sua versão final (perfazendo um total de 75 alunos). Recorrendo ao método kmeans, os resultados mostraram que o instrumento é de útil e fácil aplicação, permitindo aos docentes avaliarem e identificarem o grupo de desempenho a que pertence cada aluno, em relação à média dos resultados da respetiva turma. Relativamente ao terceiro objetivo, foi constituída uma amostra de 7 alunos de uma turma do 4º ano. A intervenção decorreu ao longo de 11 semanas, com 2 sessões semanais, cuja duração variou entre 10 a 35 minutos. Para avaliar os efeitos da intervenção, foi realizado um pré e um pós-teste, assim como 2 sessões de avaliação intermédia (checkpoints), tendo-se recorrido ao teste não paramétrico de Friedman e ao teste de Wilcoxon, para avaliar a significância das diferenças entre os tempos e os níveis de suporte, para o aluno resolver a tarefa com sucesso, respetivamente. Os resultados mostraram diferenças estatiscamente significativas, particularmente entre as duas avaliações intermédia consideradas.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

O objetivo desta dissertação foi estudar um conjunto de empresas cotadas na bolsa de valores de Lisboa, para identificar aquelas que têm um comportamento semelhante ao longo do tempo. Para isso utilizamos algoritmos de Clustering tais como K-Means, PAM, Modelos hierárquicos, Funny e C-Means tanto com a distância euclidiana como com a distância de Manhattan. Para selecionar o melhor número de clusters identificado por cada um dos algoritmos testados, recorremos a alguns índices de avaliação/validação de clusters como o Davies Bouldin e Calinski-Harabasz entre outros.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Atualmente, são geradas enormes quantidades de dados que, na maior parte das vezes, não são devidamente analisados. Como tal, existe um fosso cada vez mais significativo entre os dados existentes e a quantidade de dados que é realmente analisada. Esta situação verifica-se com grande frequência na área da saúde. De forma a combater este problema foram criadas técnicas que permitem efetuar uma análise de grandes massas de dados, retirando padrões e conhecimento intrínseco dos dados. A área da saúde é um exemplo de uma área que cria enormes quantidades de dados diariamente, mas que na maior parte das vezes não é retirado conhecimento proveitoso dos mesmos. Este novo conhecimento poderia ajudar os profissionais de saúde a obter resposta para vários problemas. Esta dissertação pretende apresentar todo o processo de descoberta de conhecimento: análise dos dados, preparação dos dados, escolha dos atributos e dos algoritmos, aplicação de técnicas de mineração de dados (classificação, segmentação e regras de associação), escolha dos algoritmos (C5.0, CHAID, Kohonen, TwoSteps, K-means, Apriori) e avaliação dos modelos criados. O projeto baseia-se na metodologia CRISP-DM e foi desenvolvido com a ferramenta Clementine 12.0. O principal intuito deste projeto é retirar padrões e perfis de dadores que possam vir a contrair determinadas doenças (anemia, doenças renais, hepatite, entre outras) ou quais as doenças ou valores anormais de componentes sanguíneos que podem ser comuns entre os dadores.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

O paradigma de avaliação do ensino superior foi alterado em 2005 para ter em conta, para além do número de entradas, o número de alunos diplomados. Esta alteração pressiona as instituições académicas a melhorar o desempenho dos alunos. Um fenómeno perceptível ao analisar esse desempenho é que a performance registada não é nem uniforme nem constante ao longo da estadia do aluno no curso. Estas variações não estão a ser consideradas no esforço de melhorar o desempenho académico e surge motivação para detectar os diferentes perfis de desempenho e utilizar esse conhecimento para melhorar a o desempenho das instituições académicas. Este documento descreve o trabalho realizado no sentido de propor uma metodologia para detectar padrões de desempenho académico, num curso do ensino superior. Como ferramenta de análise são usadas técnicas de data mining, mais precisamente algoritmos de agrupamento. O caso de estudo para este trabalho é a população estudantil da licenciatura em Eng. Informática da FCT-UNL. Propõe-se dois modelos para o aluno, que servem de base para a análise. Um modelo analisa os alunos tendo em conta a sua performance num ano lectivo e o segundo analisa os alunos tendo em conta o seu percurso académico pelo curso, desde que entrou até se diplomar, transferir ou desistir. Esta análise é realizada recorrendo aos algoritmos de agrupamento: algoritmo aglomerativo hierárquico, k-means, SOM e SNN, entre outros.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Lecture Notes in Computer Science, 9273

Relevância:

80.00% 80.00%

Publicador:

Resumo:

El trabajo realizado se divide en dos bloques bien diferenciados, ambos relacionados con el análisis de microarrays. El primer bloque consiste en agrupar las condiciones muestrales de todos los genes en grupos o clústers. Estas agrupaciones se obtienen al aplicar directamente sobre la microarray los siguientes algoritmos de agrupación: SOM,PAM,SOTA,HC y al aplicar sobre la microarray escalada con PC y MDS los siguientes algoritmos: SOM,PAM,SOTA,HC y K-MEANS. El segundo bloque consiste en realizar una búsqueda de genes basada en los intervalos de confianza de cada clúster de la agrupación activa. Las condiciones de búsqueda ajustadas por el usuario se validan para cada clúster respecto el valor basal 0 y respecto el resto de clústers, para estas validaciones se usan los intervalos de confianza. Estos dos bloques se integran en una aplicación web ya existente, el applet PCOPGene, alojada en el servidor: http://revolutionresearch.uab.es.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The automatic diagnostic discrimination is an application of artificial intelligence techniques that can solve clinical cases based on imaging. Diffuse liver diseases are diseases of wide prominence in the population and insidious course, yet early in its progression. Early and effective diagnosis is necessary because many of these diseases progress to cirrhosis and liver cancer. The usual technique of choice for accurate diagnosis is liver biopsy, an invasive and not without incompatibilities one. It is proposed in this project an alternative non-invasive and free of contraindications method based on liver ultrasonography. The images are digitized and then analyzed using statistical techniques and analysis of texture. The results are validated from the pathology report. Finally, we apply artificial intelligence techniques as Fuzzy k-Means or Support Vector Machines and compare its significance to the analysis Statistics and the report of the clinician. The results show that this technique is significantly valid and a promising alternative as a noninvasive diagnostic chronic liver disease from diffuse involvement. Artificial Intelligence classifying techniques significantly improve the diagnosing discrimination compared to other statistics.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In image segmentation, clustering algorithms are very popular because they are intuitive and, some of them, easy to implement. For instance, the k-means is one of the most used in the literature, and many authors successfully compare their new proposal with the results achieved by the k-means. However, it is well known that clustering image segmentation has many problems. For instance, the number of regions of the image has to be known a priori, as well as different initial seed placement (initial clusters) could produce different segmentation results. Most of these algorithms could be slightly improved by considering the coordinates of the image as features in the clustering process (to take spatial region information into account). In this paper we propose a significant improvement of clustering algorithms for image segmentation. The method is qualitatively and quantitative evaluated over a set of synthetic and real images, and compared with classical clustering approaches. Results demonstrate the validity of this new approach

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In 2000 the European Statistical Office published the guidelines for developing theHarmonized European Time Use Surveys system. Under such a unified framework,the first Time Use Survey of national scope was conducted in Spain during 2002–03. The aim of these surveys is to understand human behavior and the lifestyle ofpeople. Time allocation data are of compositional nature in origin, that is, they aresubject to non-negativity and constant-sum constraints. Thus, standard multivariatetechniques cannot be directly applied to analyze them. The goal of this work is toidentify homogeneous Spanish Autonomous Communities with regard to the typicalactivity pattern of their respective populations. To this end, fuzzy clustering approachis followed. Rather than the hard partitioning of classical clustering, where objects areallocated to only a single group, fuzzy method identify overlapping groups of objectsby allowing them to belong to more than one group. Concretely, the probabilistic fuzzyc-means algorithm is conveniently adapted to deal with the Spanish Time Use Surveymicrodata. As a result, a map distinguishing Autonomous Communities with similaractivity pattern is drawn.Key words: Time use data, Fuzzy clustering; FCM; simplex space; Aitchison distance

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper presents a pattern recognition method focused on paintings images. The purpose is construct a system able to recognize authors or art styles based on common elements of his work (here called patterns). The method is based on comparing images that contain the same or similar patterns. It uses different computer vision techniques, like SIFT and SURF, to describe the patterns in descriptors, K-Means to classify and simplify these descriptors, and RANSAC to determine and detect good results. The method are good to find patterns of known images but not so good if they are not.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Os solos submetidos aos sistemas de produção sem preparo estão sujeitos à compactação, provocada pelo tráfego de máquinas, tornando necessário o acompanhamento das alterações do ambiente físico, que, quando desfavorável, restringe o crescimento radicular, podendo reduzir a produtividade das culturas. O objetivo do trabalho foi avaliar o efeito de diferentes intensidades de compactação na qualidade física de um Latossolo Vermelho textura média, localizado em Jaboticabal (SP), sob cultivo de milho, usando métodos de estatística multivariada. O delineamento experimental foi inteiramente casualizado, com seis intensidades de compactação e quatro repetições. Foram coletadas amostras indeformadas do solo nas camadas de 0,02-0,05, 0,08-0,11 e 0,15-0,18 m para determinação da densidade do solo (Ds), na camada de 0-0,20 m. As características da cultura avaliadas foram: densidade radicular, diâmetro radicular, matéria seca das raízes, altura das plantas, altura de inserção da primeira espiga, diâmetro do colmo e matéria seca das plantas. As análises de agrupamentos e componentes principais permitiram identificar três grupos de alta, média e baixa produtividade de plantas de milho, segundo variáveis do solo, do sistema radicular e da parte aérea das plantas. A classificação dos acessos em grupos foi feita por três métodos: método de agrupamentos hierárquico, método não-hierárquico k-means e análise de componentes principais. Os componentes principais evidenciaram que elevadas produtividades de milho estão correlacionadas com o bom crescimento da parte aérea das plantas, em condições de menor densidade do solo, proporcionando elevada produção de matéria seca das raízes, contudo, de pequeno diâmetro. A qualidade física do Latossolo Vermelho para o cultivo do milho foi assegurada até à densidade do solo de 1,38 Mg m-3.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A erodibilidade é um fator de extrema importância na caracterização da perda de solo, representando os processos que regulam a infiltração de água e sua resistência à desagregação e o transporte de partículas. Assim, por meio da análise de dependência espacial dos componentes principais da erodibilidade (fator K), objetivou-se estimar a erodibilidade do solo em uma área de nascentes da microbacia do Córrego do Tijuco, Monte Alto-SP, e analisar a variabilidade espacial das variáveis granulométricas do solo ao longo do relevo. A erodibilidade média da área foi considerada alta, e a análise de agrupamento k-means apontou para uma formação de cinco grupos: no primeiro, os altos teores de areia grossa (AG) e média (AM) condicionaram sua distribuição nas áreas planas; o segundo, caracterizado pelo alto teor de areia fina (AF), distribui-se nos declives mais convexos; o terceiro, com altos teores de silte e areia muito fina (AMF), concentrou-se nos maiores declives e concavidades; o quarto, com maior teor de argila, seguiu as zonas de escoamento de água; e o quinto, com alto teor de matéria orgânica (MO) e areia grossa (AG), distribui-se nas proximidades da zona urbana. A análise de componentes principais (ACP) mostrou quatro componentes com 87,4 % das informações, sendo o primeiro componente principal (CP1) discriminado pelo transporte seletivo de partículas principalmente em zonas pontuais de maior declividade e acúmulo de sedimentos; o segundo (CP2), discriminado pela baixa coesão entre as partículas, mostra acúmulo da areia fina nas áreas de menor cota em toda a área de concentração de água; o terceiro (CP3), discriminado pela maior agregação do solo, concentra-se principalmente nas bases de grandes declives; e o quarto (CP4), discriminado pela areia muito fina, distribui-se ao longo das declividades nas maiores altitudes. Os resultados sugerem o comportamento granulométrico do solo, que se mostra suscetível ao processo erosivo devido às condições texturais superficiais e à movimentação do relevo.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Since different pedologists will draw different soil maps of a same area, it is important to compare the differences between mapping by specialists and mapping techniques, as for example currently intensively discussed Digital Soil Mapping. Four detailed soil maps (scale 1:10.000) of a 182-ha sugarcane farm in the county of Rafard, São Paulo State, Brazil, were compared. The area has a large variation of soil formation factors. The maps were drawn independently by four soil scientists and compared with a fifth map obtained by a digital soil mapping technique. All pedologists were given the same set of information. As many field expeditions and soil pits as required by each surveyor were provided to define the mapping units (MUs). For the Digital Soil Map (DSM), spectral data were extracted from Landsat 5 Thematic Mapper (TM) imagery as well as six terrain attributes from the topographic map of the area. These data were summarized by principal component analysis to generate the map designs of groups through Fuzzy K-means clustering. Field observations were made to identify the soils in the MUs and classify them according to the Brazilian Soil Classification System (BSCS). To compare the conventional and digital (DSM) soil maps, they were crossed pairwise to generate confusion matrices that were mapped. The categorical analysis at each classification level of the BSCS showed that the agreement between the maps decreased towards the lower levels of classification and the great influence of the surveyor on both the mapping and definition of MUs in the soil map. The average correspondence between the conventional and DSM maps was similar. Therefore, the method used to obtain the DSM yielded similar results to those obtained by the conventional technique, while providing additional information about the landscape of each soil, useful for applications in future surveys of similar areas.