764 resultados para internal medicine
Resumo:
Aims/hypothesis: Glycation of insulin, resulting in impaired bioactivity, has been shown within pancreatic beta cells. We have used a novel and specific radioimmunoassay to detect glycated insulin in plasma of Type 2 diabetic subjects.
Methods: Blood samples were collected from 102 Type 2 diabetic patients in three main categories: those with good glycaemic control with a HbA1c less than 7%, moderate glycaemic control (HbA1c 7–9%) and poor glycaemic control (HBA1c greater than 9%). We used 75 age- and sex-matched non-diabetic subjects as controls. Samples were analysed for HbA1c, glucose and plasma concentrations of glycated insulin and insulin.
Results: Glycated insulin was readily detected in control and Type 2 diabetic subjects. The mean circulating concentration of glycated insulin in control subjects was 12.6±0.9 pmol/l (n=75). Glycated insulin in the good, moderate and poorly controlled diabetic groups was increased 2.4-fold (p<0.001, n=44), 2.2- fold (p<0.001, n=41) and 1.1-fold (n=17) corresponding to 29.8±5.4, 27.3±5.7 and 13.5±2.9 pmol/l, respectively.
Conclusion/interpretation: Glycated insulin circulates at noticeably increased concentrations in Type 2 diabetic subjects. [Diabetologia (2003) 46:475–478]
Resumo:
The presence and biological significance of circulating glycated insulin has been evaluated by high-pressure liquid chromatography (HPLC), electrospray ionization mass spectrometry (ESI-MS), radioimmunoassay (RIA), receptor binding, and hyperinsulinemic-euglycemic clamp techniques. ESI-MS analysis of an HPLC-purified plasma pool from four male type 2 diabetic subjects (HbA(1e) 8.1 +/- 0.2%, plasma glucose 8.7 +/- 1.3 mmol/l [means +/- SE]) revealed two major insulin-like peaks with retention times of 14-16 min. After spectral averaging, the peak with retention time of 14.32 min exhibited a prominent triply charged (M+3H)(3+) species at 1,991.1 m/z, representing monoglycated insulin with an intact M-r of 5,970.3 Da. The second peak (retention time 15.70 min) corresponded to native insulin (M-r 5,807.6 Da), with the difference between the two peptides (162.7 Da) representing a single glucitol adduct (theoretical 164 Da). Measurement of glycated insulin in plasma of type 2 diabetic subjects by specific RIA gave circulating levels of 10.1 +/- 2.3 pmol/l, corresponding to -9% total insulin. Biological activity of pure synthetic monoglycated insulin (insulin B-chain Phe(1)-glucitol adduct) was evaluated in seven overnight-fasted healthy nonobese male volunteers using two-step euglycemic-hyperinsulinemic clamps (2 h at 16.6 mug (.) kg(-1) (.) min(-1), followed by 2 h at 83.0 mug (.) kg(-1) (.) min(-1); corresponding to 0.4 and 2.0 mU (.) kg(-1) (.) min(-1)). At the lower dose, the exogenons glucose infusion rates required to maintain euglycemia during steady state were significantly lower with glycated insulin (P
Resumo:
Aims/hypothesis Ablation of gastric inhibitory polypeptide ( GIP) receptor action is reported to protect against obesity and associated metabolic abnormalities. The aim of this study was to use prediabetic ob/ob mice to examine whether 60 days of chemical GIP receptor ablation with (Pro(3)) GIP is able to counter the development of genetic obesity-related diabetes.
Resumo:
Aims/hypothesis: This study examined the plasma stability, biological activity and antidiabetic potential of two novel N-terminally modified analogues of gastric inhibitory polypeptide (GIP).
Methods: Degradation studies were carried out on GIP, N-acetyl-GIP (Ac-GIP) and N-pyroglutamyl-GIP (pGlu-GIP) in vitro following incubation with either dipeptidylpeptidase IV or human plasma. Cyclic adenosine 3'5' monophosphate (cAMP) production was assessed in Chinese hamster lung fibroblast cells transfected with the human GIP receptor. Insulin-releasing ability was assessed in vitro in BRIN-BD11 cells and in obese diabetic (ob/ob) mice.
Results: GIP was rapidly degraded by dipeptidylpeptidase IV and plasma (t1/2 2.3 and 6.2 h, respectively) whereas Ac-GIP and pGlu-GIP remained intact even after 24 h. Both Ac-GIP and pGlu-GIP were extremely potent (p<0.001) at stimulating cAMP production (EC50 values 1.9 and 2.7 nmol/l, respectively), almost a tenfold increase compared to native GIP (18.2 nmol/l). Both Ac-GIP and pGlu-GIP (10–13–10–8 mmol/l) were more potent at stimulating insulin release compared to the native GIP (p<0.001), with 1.3-fold and 1.2-fold increases observed at 10–8 mol/l, respectively. Administration of GIP analogues (25 nmol/kg body weight, i.p.) together with glucose (18 mmol/kg) in (ob/ob) mice lowered (p<0.001) individual glucose values at 60 min together with the areas under the curve for glucose compared to native GIP. This antihyperglycaemic effect was coupled to a raised (p<0.001) and more prolonged insulin response after administration of Ac-GIP and pGlu-GIP (AUC, 644±54 and 576±51 ng·ml–1·min, respectively) compared with native GIP (AUC, 257±29 ng·ml–1·min).
Conclusion/interpretation: Ac-GIP and pGlu-GIP, show resistance to plasma dipeptidylpeptidase IV degradation, resulting in enhanced biological activity and improved antidiabetic potential in vivo, raising the possibility of their use in therapy of Type II (non-insulin-dependent) diabetes mellitus.
Resumo:
Aims/hypothesis: Diabetic nephropathy, characterised by persistent proteinuria, hypertension and progressive kidney failure, affects a subset of susceptible individuals with diabetes. It is also a leading cause of end-stage renal disease (ESRD). Non-synonymous (ns) single nucleotide polymorphisms (SNPs) have been reported to contribute to genetic susceptibility in both monogenic disorders and common complex diseases. The objective of this study was to investigate whether nsSNPs are involved in susceptibility to diabetic nephropathy using a case-control design.
Methods: White type 1 diabetic patients with (cases) and without (controls) nephropathy from eight centres in the UK and Ireland were genotyped for a selected subset of nsSNPs using Illumina's GoldenGate BeadArray assay. A ? 2 test for trend, stratified by centre, was used to assess differences in genotype distribution between cases and controls. Genomic control was used to adjust for possible inflation of test statistics, and the False Discovery Rate method was used to account for multiple testing.
Results: We assessed 1,111 nsSNPs for association with diabetic nephropathy in 1,711 individuals with type 1 diabetes (894 cases, 817 controls). A number of SNPs demonstrated a significant difference in genotype distribution between groups before but not after correction for multiple testing. Furthermore, neither subgroup analysis (diabetic nephropathy with ESRD or diabetic nephropathy without ESRD) nor stratification by duration of diabetes revealed any significant differences between groups.
Conclusions/interpretation: The nsSNPs investigated in this study do not appear to contribute significantly to the development of diabetic nephropathy in patients with type 1 diabetes.