928 resultados para intercellular adhesion molecule-1
Resumo:
In this study, we investigated the role of Vα14 natural killer T (NKT) cells in transplant immunity. The ability to reject allografts was not significantly different between wild-type (WT) and Vα14 NKT cell-deficient mice. However, in models in which tolerance was induced against cardiac allografts by blockade of lymphocyte function-associated antigen-1/intercellular adhesion molecule-1 or CD28/B7 interactions, long-term acceptance of the grafts was observed only in WT but not Vα14 NKT cell-deficient mice. Adoptive transfer with Vα14 NKT cells restored long-term acceptance of allografts in Vα14 NKT cell-deficient mice. The critical role of Vα14 NKT cells to mediate immunosuppression was also observed in vitro in mixed lymphocyte cultures in which lymphocyte function-associated antigen-1/intercellular adhesion molecule-1 or CD28/B7 interactions were blocked. Experiments using IL-4- or IFN-γ-deficient mice suggested a critical contribution of IFN-γ to the Vα14 NKT cell-mediated allograft acceptance in vivo. These results indicate a critical contribution of Vα14 NKT cells to the induction of allograft tolerance and provide a useful model to investigate the regulatory role of Vα14 NKT cells in various immune responses.
Resumo:
ADP-ribosylation factor (ARF) GTPases and their regulatory proteins have been implicated in the control of diverse biological functions. Two main classes of positive regulatory elements for ARF have been discovered so far: the large Sec7/Gea and the small cytohesin/ARNO families, respectively. These proteins harbor guanine–nucleotide-exchange factor (GEF) activity exerted by the common Sec7 domain. The availability of a specific inhibitor, the fungal metabolite brefeldin A, has enabled documentation of the involvement of the large GEFs in vesicle transport. However, because of the lack of such tools, the biological roles of the small GEFs have remained controversial. Here, we have selected a series of RNA aptamers that specifically recognize the Sec7 domain of cytohesin 1. Some aptamers inhibit guanine–nucleotide exchange on ARF1, thereby preventing ARF activation in vitro. Among them, aptamer M69 exhibited unexpected specificity for the small GEFs, because it does not interact with or inhibit the GEF activity of the related Gea2-Sec7 domain, a member of the class of large GEFs. The inhibitory effect demonstrated in vitro clearly is observed as well in vivo, based on the finding that M69 produces similar results as a dominant-negative, GEF-deficient mutant of cytohesin 1: when expressed in the cytoplasm of T-cells, M69 reduces stimulated adhesion to intercellular adhesion molecule-1 and results in a dramatic reorganization of F-actin distribution. These highly specific cellular effects suggest that the ARF-GEF activity of cytohesin 1 plays an important role in cytoskeletal remodeling events of lymphoid cells.
Resumo:
The integrin αLβ2 has three different domains in its headpiece that have been suggested to either bind ligand or to regulate ligand binding. One of these, the inserted or I domain, has a fold similar to that of small G proteins. The I domain of the αM and α2 subunits has been crystallized in both open and closed conformations; however, the αL I domain has been crystallized in only the closed conformation. We hypothesized that the αL domain also would have an open conformation, and that this would be the ligand binding conformation. Therefore, we introduced pairs of cysteine residues to form disulfides that would lock the αL I domain in either the open or closed conformation. Locking the I domain open resulted in a 9,000-fold increase in affinity to intercellular adhesion molecule-1 (ICAM-1), which was reversed by disulfide reduction. By contrast, the affinity of the locked closed conformer was similar to wild type. Binding completely depended on Mg2+. Orders of affinity were ICAM-1 > ICAM-2 > ICAM-3. The kon, koff, and KD values for the locked open I domain were within 1.5-fold of values previously determined for the αLβ2 complex, showing that the I domain is sufficient for full affinity binding to ICAM-1. The locked open I domain antagonized αLβ2-dependent adhesion in vitro, lymphocyte homing in vivo, and firm adhesion but not rolling on high endothelial venules. The ability to reversibly lock a protein fold in an active conformation with dramatically increased affinity opens vistas in therapeutics and proteomics.
Resumo:
Adhesion of erythrocytes infected with the malaria parasite Plasmodium falciparum to human host receptors is a process associated with severe malarial pathology. A number of in vitro cell lines are available as models for these adhesive processes, including Chinese hamster ovary (CHO) cells which express the placental adhesion receptor chondroitin-4-sulphate (CSA) on their surface. CHO-745 cells, a glycosaminoglycan-negative mutant CHO cell line lacking CSA and other reported P. falciparum adhesion receptors, are often used for recombinant expression of host receptors and for receptor binding studies. In this study we show that P. falciparum-infected erythrocytes can be easily selected for adhesion to an endogenous receptor on the surface of CHO-745 cells, bringing into question the validity of using these cells as a tool for P. falciparum adhesin expression studies. The adhesive interaction between CHO-745 cells and parasitized erythrocytes described here is not mediated by the known P. falciparum adhesion receptors CSA, CD36, or ICAM-1. However, we found that CHO-745-selected parasitized erythrocytes bind normal human IgM and that adhesion to CHO-745 cells is inhibited by protein A in the presence of serum, but not in its absence, indicating a non-specific inhibitory effect. Thus, protein A, which has been used as an inhibitor for a recently described interaction between infected erythrocytes and the placenta, may not be an appropriate in vitro inhibitor for understanding in vivo adhesive interactions. (c) 2005 Australian Society for Parasitology Inc. Published by Elsevier Ltd. All rights reserved.
Resumo:
Inadequate blood flow to an organ, ischaemia, may lead to both local and remote tissue injury characterized by oedema, increased microvascular permeability to protein and degradation of connective tissue components. This damage is probably caused by the accumulation and inappropriate activation of neutrophils which occurs when the tissue is reperfused. To test this hypothesis a number of in vitro models of the sequential stages of ischaemia/reperfusion injury were examined. Methods were initially developed to examine the adhesion of neutrophils to monolayers of a cultured endothelial cell line (ECV304) after periods of hypoxia and reoxygenation. Neutrophil migration in response to factors secreted by the treated endothelial cells was then assessed. The genesis of an inappropriate oxidative burst by the neutrophil upon exposure to endothelial chemoattractants and adhesion molecules was also measured. Finally to appraise how tissue function might be affected by endothelial cell hypoxia the contractility of vascular smooth muscle was examined. Neutrophil adhesion to ECV304 cells, which had been hypoxic for 4 hours and then reoxygenated for 30 minutes, was significantly increased. This response was probably initiated by reactive oxygen species (ROS) generated by the endothelial cells. Blockage of their production by allopurinol reduced the heightened adhesion. Similarly removal of ROS by superoxide dismutase or catalase also attenuated adhesion. ROS generation in turn caused the release of a soluble factor (s) which induced a conformational change on the neutrophil surface allowing it to bind to the intercellular adhesion molecule 1 (ICAM-1) on the endothelial cell. Soluble factor (s) from hypoxia/reoxygenated endothelial cells also had a powerful neutrophil chemoattractant ability. When neutrophils were exposed to both hypoxic/reoxygenated endothelial cells and the soluble factor (s) released by them a large oxidative burst was elicited. This response was greatest immediately after reoxygenation and one hour later was diminishing suggesting at least one of the components involved was labile. Analysis of the supernatant from hypoxic/reoxygenated endothelial cell cultures and studies using inhibitors of secretion suggested platelet activating factor (PAF) may be a major component in this overall sequence of events. Lesser roles for IL-8, TNF and LTB4 were also suggested. The secretory products from hypoxia/reoxygenated endothelial cells also affected smooth muscle contractility having an anti-vasoconstrictor or relaxation property, similar to that exerted by PAF.
Resumo:
Introduction: It is widely accepted that obesity is associated with endothelial dysfunction. In a recent paper, we have also found circuit resistance training may reduce visceral fat in obese aged women. Accordingly, the current study was conducted to ascertain the effects of circuit resistance training on markers of endothelial dysfunction in this population group. Methods: In the present interventional study, a total of 48 obese aged women were recruited from the community. Twenty-four of them were randomly assigned to perform a 12-week resistance circuit training programme, 3-days per week. This training was circularly performed in 6 stations: arm curl, leg extension, seated row, leg curl, triceps extension and leg press. The Jamar handgrip electronic dynamometer was used to assess maximal handgrip strength of the dominant hand. Lastly, serum samples were analysed using an immunoassay (ELISA) for endothelin-1, intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1). Results: When compared to baseline, resistance training significantly reduced serum levels of endothelin-1 (2.28 ± 0.7 vs. 1.98 ± 1.1 pg/ml; p = 0.019; d = 0.67) and ICAM-1 (290 ± 69 vs. 255 ± 76 ng/ml; p = 0.004; d = 0.92) in the experimental group. No significant changes in any of the tested outcomes were found in the control group. Conclusion: A short-term circuit resistance program improved endothelial dysfunction in aged obese women. Further studies on this topic are still required to consolidate this approach in clinical application.
Resumo:
Antecedentes: La rinitis alérgica es una enfermedad secundaria a la exposición a alérgenos con una inflamación de las mucosas nasales mediadas por la Ig-E, tiene síntomas como estornudos, obstrucción nasal, prurito nasal y descarga nasal. Los tratamientos de primera línea son los antihistamínicos orales y Montelukast los cuales se dan como monoterapia, existe la combinación de los dos tratamientos en el mercado, sin embargo se duda de su eficacia combinada para tratar los síntomas nasales. Objetivo: Determinar la eficacia y seguridad del tratamiento combinado de Montelukast con Antihistamínicos orales en el tratamiento de Rinitis Alérgica. Metodología: Se realizó una revisión sistemática de la literatura con metaanálisis de los estudios clínicos que evaluaron la eficacia de los antihistamínicos orales y Montelukast tanto en monoterapia como en terapia combinada. Resultados: De 795 artículos publicados hasta febrero 2016 identificados en las bases de datos electrónicas y literatura gris, se seleccionaron por consenso nueve estudios. Los estudios mostraron una reducción significativa del TNSS de -2,61 (-3.32 a -1,90) de la terapia combinada de Montelukast más antihistamínicos orales en comparación con la monoterapia de cada uno de ellos. Los estudios reportaron que la seguridad de la terapia combinada de Montelukast más antihistamínicos orales no fue diferente a la monoterapia. Conclusiones: La terapia combinada de Montelukast con antihistamínico redujo el puntaje de TNSS en -2,61 (-3.32 a -1,90) por lo que es eficaz y seguro en pacientes con rinitis alérgica.
Resumo:
The characteristic finding of autoantibodies in patients with vasculitis has raised the possibility that these antibodies play a role in the pathogenesis of the disease. The expression of adhesion molecules (AM) on leucocytes and endothelial cells is believed to be integral to the development of vasculitis. We therefore investigated the effect of sera, positive for anti-neutrophil cytoplasmic antibodies (ANCA) or anti-nuclear antibodies (ANA) from patients with vasculitis, on granulocyte expression of the adhesion molecule Mac-1 (CD11b). Autoantibody-positive sera from 15 out of 35 patients with vasculitis stimulated an up-regulation of Mac-1 on granulocytes. In most cases this effect was reproduced by the autoantibody-positive purified IgG fraction. Autoantibody-negative samples did not stimulate AM up-regulation. Of interest, preincubation of sera with purified antigens did not inhibit AM up-regulation by the autoantibody samples. Blocking the Fc receptors on granulocytes did result in a decrease of Mac-1 up-regulation, but this trend was not statistically significant. These results suggest that both ANCA and ANA have the capacity to up-regulate granulocyte AM expression, and that while Fc interaction with granulocyte Fc receptors is important, it is not the only mechanism whereby such autoantibodies activate cells.
Resumo:
To examine the role of complement components as regulators of the expression of endothelial adhesive molecules in response to immune complexes (ICs), we determined whether ICs stimulate both endothelial adhesiveness for leukocytes and expression of E-selectin and intercellular and vascular cell adhesion molecules 1 (ICAM-1 and VCAM-1). We found that ICs [bovine serum albumin (BSA)-anti-BSA] stimulated endothelial cell adhesiveness for added leukocytes in the presence of complement-sufficient normal human serum (NHS) but not in the presence of heat-inactivated serum (HIS) or in tissue culture medium alone. Depletion of complement component C3 or C8 from serum did not prevent enhanced endothelial adhesiveness stimulated by ICs. In contrast, depletion of complement component C1q markedly inhibited IC-stimulated endothelial adhesiveness for leukocytes. When the heat-labile complement component C1q was added to HIS, the capacity of ICs to stimulate endothelial adhesiveness for leukocytes was completely restored. Further evidence for the possible role of C1q in mediating the effect of ICs on endothelial cells was the discovery of the presence of the 100- to 126-kDa C1q-binding protein on the surface of endothelial cells (by cytofluorography) and of message for the 33-kDa C1q receptor in resting endothelial cells (by reverse transcription-PCR). Inhibition of protein synthesis by cycloheximide blocked endothelial adhesiveness for leukocytes stimulated by either interleukin 1 or ICs in the presence of NHS. After stimulation with ICs in the presence of NHS, endothelial cells expressed increased numbers of adhesion molecules (E-selectin, ICAM-1, and VCAM-1). Endothelial expression of adhesion molecules mediated, at least in part, endothelial adhesiveness for leukocytes, since leukocyte adhesion was blocked by monoclonal antibodies directed against E-selectin. These studies show that ICs stimulate endothelial cells to express adhesive proteins for leukocytes in the presence of a heat-labile serum factor. That factor appears to be C1q.
Resumo:
Clustering of the T cell integrin, LFA-1, at specialized regions of intercellular contact initiates integrin-mediated adhesion and downstream signaling, events that are necessary for a successful immunological response. But how clustering is achieved and sustained is not known. Here we establish that an LFA-1-associated molecule, PTA-1, is localized to membrane rafts and binds the carboxyl-terminal domain of isoforms of the actin-binding protein 4.1G. Protein 4.1 is known to associate with the membrane-associated guanylate kinase homologue, human discs large. We show that the carboxyl-terminal peptide of PTA-1 also can bind human discs large and that the presence or absence of this peptide greatly influences binding between PTA-1 and different isoforms of 4.1G. T cell stimulation with phorbol ester or PTA-1 cross-linking induces PTA-1 and 4.1G to associate tightly with the cytoskeleton, and the PTA-1 from such activated cells now can bind to the amino-terminal region of 4.1G. We propose that these dynamic associations provide the structural basis for a regulated molecular adhesive complex that serves to cluster and transport LFA-1 and associated molecules.
Resumo:
The adhesion molecule L1, which is extensively characterized in the nervous system, is also expressed in dendritic cells (DCs), but its function there has remained elusive. To address this issue, we ablated L1 expression in DCs of conditional knockout mice. L1-deficient DCs were impaired in adhesion to and transmigration through monolayers of either lymphatic or blood vessel endothelial cells, implicating L1 in transendothelial migration of DCs. In agreement with these findings, L1 was expressed in cutaneous DCs that migrated to draining lymph nodes, and its ablation reduced DC trafficking in vivo. Within the skin, L1 was found in Langerhans cells but not in dermal DCs, and L1 deficiency impaired Langerhans cell migration. Under inflammatory conditions, L1 also became expressed in vascular endothelium and enhanced transmigration of DCs, likely through L1 homophilic interactions. Our results implicate L1 in the regulation of DC trafficking and shed light on novel mechanisms underlying transendothelial migration of DCs. These observations might offer novel therapeutic perspectives for the treatment of certain immunological disorders.
Resumo:
Previously we have employed antibodies to the tight junction (TJ)-associated proteins ZO-1 and occludin to describe endothelial tight junction abnormalities, in lesional and normal appearing white matter, in primary and secondary progressive multiple sclerosis (MS). This work is extended here by use of antibodies to the independent TJ-specific proteins and junctional adhesion molecule A & B (JAM-A, JAM-B). We have also assessed the expression in MS of ß-catenin, a protein specific to the TJ-associated adherens junction. Immunocytochemistry and semiquantitative confocal microscopy for JAM-A and ß-catenin was performed on snap-frozen sections from MS cases (n = 11) and controls (n = 6). Data on 1,443 blood vessels was acquired from active lesions (n = 13), inactive lesions (n = 13), NAWM (n = 20) and control white matter (n = 13). In MS abnormal JAM-A expression was found in active (46%) and inactive lesions (21%), comparable to previous data using ZO-1. However, a lower level of TJ abnormality was found in MS NAWM using JAM-A (3%) compared to ZO-1 (13%). JAM-B was strongly expressed on a small number of large blood vessels in control and MS tissues but at too low a level for quantitative analysis. By comparison with the high levels of abnormality observed with the TJ proteins, the adherens junction protein ß-catenin was normally expressed in all MS and control tissue categories. These results confirm, by use of the independent marker JAM-A, that TJ abnormalities are most frequent in active white matter lesions. Altered expression of JAM-A, in addition to affecting junctional tightness may also both reflect and affect leukocyte trafficking, with implications for immune status within the diseased CNS. Conversely, the adherens junction component of the TJ, as indicated by ß-catenin expression is normally expressed in all MS and control tissue categories.
Resumo:
Hypertension, a key risk factor for stroke, cardiovascular disease and dementia, is associated with chronic vascular inflammation, and although poorly understood, putative mechanisms include proinflammatory responses induced by mechanical stretching, with cytokine release and associated upregulated expression of adhesion molecules. Because blood pressure increases with age, we measured baseline and tumour necrosis alpha (TNF-a)-stimulated CD11b/CD18 adhesion molecule expression on leucocytes to assess any association between the two. In 38 subjects (mean age 85 years), consecutively enrolled from Belfast Elderly Longitudinal Free-Living Aging Study (BELFAST), baseline and TNF-a-stimulated CD11b/CD18 expression on separated monocytes and neutrophils increased with systolic blood pressure >120 mmHg (p=0.05) and for lymphocytes, with diastolic blood pressure >80 mmHg (p<0.05).These findings show increased potential stickiness of intravascular cells with increasing blood pressure which is accentuated by TNF-a, and suggest mechanistic reasons why better hypertension control is important.