921 resultados para increased sensitivity
Resumo:
The Ca2+-calcineurin pathway affects virulence and morphogenesis in filamentous fungi. Here, we identified 37 CalA-interacting proteins that interact with the catalytic subunit of calcineurin (CalA) in Aspergillus fumigatus, including the nucleoside diphosphate kinase (SwoH). The in vivo interaction between CalA and SwoH was validated by bimolecular fluorescence complementation. A. fumigatus swoH is an essential gene. Therefore, a temperature-sensitive conditional mutant strain with a point mutation in the active site, SwoH(V83F), was constructed, which demonstrated reduced growth and increased sensitivity to elevated temperatures. The SwoH(V83F) mutation did not cause a loss in virulence in the Galleria mellonella infection model. Taken together these results imply that CalA interacts with SwoH. (C) 2012 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.
Resumo:
OBJECTIVE: Differentiation between benign and malignant ovarian neoplasms is essential for creating a system for patient referrals. Therefore, the contributions of the tumor markers CA125 and human epididymis protein 4 (HE4) as well as the risk ovarian malignancy algorithm (ROMA) and risk malignancy index (RMI) values were considered individually and in combination to evaluate their utility for establishing this type of patient referral system. METHODS: Patients who had been diagnosed with ovarian masses through imaging analyses (n = 128) were assessed for their expression of the tumor markers CA125 and HE4. The ROMA and RMI values were also determined. The sensitivity and specificity of each parameter were calculated using receiver operating characteristic curves according to the area under the curve (AUC) for each method. RESULTS: The sensitivities associated with the ability of CA125, HE4, ROMA, or RMI to distinguish between malignant versus benign ovarian masses were 70.4%, 79.6%, 74.1%, and 63%, respectively. Among carcinomas, the sensitivities of CA125, HE4, ROMA (pre-and post-menopausal), and RMI were 93.5%, 87.1%, 80%, 95.2%, and 87.1%, respectively. The most accurate numerical values were obtained with RMI, although the four parameters were shown to be statistically equivalent. CONCLUSION: There were no differences in accuracy between CA125, HE4, ROMA, and RMI for differentiating between types of ovarian masses. RMI had the lowest sensitivity but was the most numerically accurate method. HE4 demonstrated the best overall sensitivity for the evaluation of malignant ovarian tumors and the differential diagnosis of endometriosis. All of the parameters demonstrated increased sensitivity when tumors with low malignancy potential were considered low-risk, which may be used as an acceptable assessment method for referring patients to reference centers.
Resumo:
The potential use of alanine for the production of nanoparticles is presented here for the first time. Silver nanoparticles were synthesized using a simple green method, namely the thermal treatment of silver nitrate aqueous solutions with in-alanine. The latter compound was employed both as a reducing and a capping agent. Particles with average size equal to 7.5 nm, face-centered cubic crystalline structure, narrow size distribution, and spherical shape were obtained. Interaction between the silver ions present on the surface of the nanoparticles and the amine group of the DL-alanine molecule seems to be responsible for reduction of the silver ions and for the stability of the colloid. The bio-hybrid nanocomposite was used as an ESR dosimeter. The amount of silver nanoparticles in the nanocomposite was not sufficient to cause considerable loss of tissue equivalency. Moreover, the samples containing nanoparticles presented increased sensitivity and reduced energetic dependence as compared with pure DL-alanine, contributing to the construction of small-sized dosimeters. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
The effects of deep brain stimulation of the subthalamic nucleus on nonmotor symptoms of Parkinson's disease (PD) rarely have been investigated. Among these, sensory disturbances, including chronic pain (CP), are frequent in these patients. The aim of this study was to evaluate the changes induced by deep brain stimulation in the perception of sensory stimuli, either noxious or innocuous, mediated by small or large nerve fibers. Sensory detection and pain thresholds were assessed in 25 PD patients all in the off-medication condition with the stimulator turned on or off (on- and off-stimulation conditions, respectively). The relationship between the changes induced by surgery on quantitative sensory testing, spontaneous CP, and motor abilities were studied. Quantitative sensory test results obtained in PD patients were compared with those of age-matched healthy subjects. Chronic pain was present in 72% of patients before vs 36% after surgery (P = .019). Compared with healthy subjects, PD patients had an increased sensitivity to innocuous thermal stimuli and mechanical pain, but a reduced sensitivity to innocuous mechanical stimuli. In addition, they had an increased pain rating when painful thermal stimuli were applied, particularly in the off-stimulation condition. In the on-stimulation condition, there was an increased sensitivity to innocuous thermal stimuli but a reduced sensitivity to mechanical or thermal pain. Pain provoked by thermal stimuli was reduced when the stimulator was turned on. Motor improvement positively correlated with changes in warm detection and heat pain thresholds. Subthalamic nucleus deep brain stimulation contributes to relieve pain associated with PD and specifically modulates small fiber-mediated sensations. (C) 2012 International Association for the Study of Pain. Published by Elsevier B. V. All rights reserved.
Resumo:
Background: The gene YCL047C, which has been renamed promoter of filamentation gene (POF1), has recently been described as a cell component involved in yeast filamentous growth. The objective of this work is to understand the molecular and biological function of this gene. Results: Here, we report that the protein encoded by the POF1 gene, Pof1p, is an ATPase that may be part of the Saccharomyces cerevisiae protein quality control pathway. According to the results, Δpof1 cells showed increased sensitivity to hydrogen peroxide, tert-butyl hydroperoxide, heat shock and protein unfolding agents, such as dithiothreitol and tunicamycin. Besides, the overexpression of POF1 suppressed the sensitivity of Δpct1, a strain that lacks a gene that encodes a phosphocholine cytidylyltransferase, to heat shock. In vitro analysis showed, however, that the purified Pof1p enzyme had no cytidylyltransferase activity but does have ATPase activity, with catalytic efficiency comparable to other ATPases involved in endoplasmic reticulum-associated degradation of proteins (ERAD). Supporting these findings, co-immunoprecipitation experiments showed a physical interaction between Pof1p and Ubc7p (an ubiquitin conjugating enzyme) in vivo. Conclusions: Taken together, the results strongly suggest that the biological function of Pof1p is related to the regulation of protein degradation.
Resumo:
Introduction Toxoplasmosis may be life-threatening in fetuses and in immune-deficient patients. Conventional laboratory diagnosis of toxoplasmosis is based on the presence of IgM and IgG anti-Toxoplasma gondii antibodies; however, molecular techniques have emerged as alternative tools due to their increased sensitivity. The aim of this study was to compare the performance of 4 PCR-based methods for the laboratory diagnosis of toxoplasmosis. One hundred pregnant women who seroconverted during pregnancy were included in the study. The definition of cases was based on a 12-month follow-up of the infants. Methods Amniotic fluid samples were submitted to DNA extraction and amplification by the following 4 Toxoplasma techniques performed with parasite B1 gene primers: conventional PCR, nested-PCR, multiplex-nested-PCR, and real-time PCR. Seven parameters were analyzed, sensitivity (Se), specificity (Sp), positive predictive value (PPV), negative predictive value (NPV), positive likelihood ratio (PLR), negative likelihood ratio (NLR) and efficiency (Ef). Results Fifty-nine of the 100 infants had toxoplasmosis; 42 (71.2%) had IgM antibodies at birth but were asymptomatic, and the remaining 17 cases had non-detectable IgM antibodies but high IgG antibody titers that were associated with retinochoroiditis in 8 (13.5%) cases, abnormal cranial ultrasound in 5 (8.5%) cases, and signs/symptoms suggestive of infection in 4 (6.8%) cases. The conventional PCR assay detected 50 cases (9 false-negatives), nested-PCR detected 58 cases (1 false-negative and 4 false-positives), multiplex-nested-PCR detected 57 cases (2 false-negatives), and real-time-PCR detected 58 cases (1 false-negative). Conclusions The real-time PCR assay was the best-performing technique based on the parameters of Se (98.3%), Sp (100%), PPV (100%), NPV (97.6%), PLR (â^ž), NLR (0.017), and Ef (99%).
Resumo:
Tetraspan vesicle membrane proteins (TVPs) sind konservierte, ubiquitär vorkommende Membranproteine synaptischer Vesikel und zytoplasmatischer Transportvesikel. Bei Säugetieren lassen sie sich in die Physine, Gyrine und SCAMPs (secretory carrier-associated membrane proteins) unterteilen, die im Nematoden C. elegans jeweils nur durch ein einzelnes Polypeptid vertreten sind (Synaptophysin-1 [SPH-1], Synaptogyrin-1 [SNG-1] und SCAMP-1 [SCM-1]). Obwohl den TVPs eine Beteiligung bei der Regulation des Vesikelzyklus zugesprochen wurde, sind Synaptophysin-1-Knockout-Mäuse und vollständig TVP-defiziente Würmer gesund und weisen nur geringgradige Veränderungen auf. In dieser Arbeit sollten daher zum einen genomweite komparative Transkriptomanalysen durchgeführt werden, um mögliche Kompensationsmechanismen in der Maus und C. elegans zu finden, zum anderen sollten mit Hilfe pharmakologischer Stressassays und genetischer Verfahren Schwachstellen und Redundanzen identifiziert werden. Erstaunlicherweise konnten durch Affymetrix GeneChip-Analysen der RNA in der Retina von Synaptophysin-1-/--Mäusen keine differenziell exprimierten Gene gefunden werden. Bei der Untersuchung der C. elegans-TVP-Dreifachmutante wurden hingegen 17 Gene mit erhöhter und 3 mit erniedrigter Transkription identifiziert. Die Befunde für 12 hochregulierte Gene wurden durch quantitative Real-Time RT-PCR bestätigt. Das am stärksten hochregulierte Gen arf-1.1 kodiert für eine GTPase, die vermutlich an der Regulation der Vesikelbildung beteiligt ist. Von den ebenso identifizierten Genen cdr-2, cdr-4 und pgp-9 ist bekannt, dass sie in Stresssituationen, z. B. in Gegenwart von Cadmium, verstärkt transkribiert werden. ugt-62 und ugt-19 kodieren für Glucuronosyltransferasen. Für arf-1.1, cdr-2, ugt-62 sowie für das Gen T16G1.6, das für eine coiled-coil-Domäne kodiert, wurden im Folgenden fluoreszierende Promoterkonstrukte hergestellt, um Koexpressionsmuster mit TVPs zu bestimmen. Es stellte sich heraus, dass alle vier Promoterkonstrukte im Darm zusammen mit SPH-1 und SCM-1 im Darm transkribiert werden. Mit fluoreszierenden Translationschimären konnte weiterhin gezeigt werden, dass ARF-1.1 und CDR-2 mit den Darm-spezifischen TVPs im apikalen Bereich der Darmzellen kolokalisieren. Um mehr über die Funktion von TVPs im Vesikelzyklus zu erfahren, wurden pharmakologische und genetische Analysen von Würmern durchgeführt, in denen die Expression des Neuronen-spezifischen SNG-1 verändert ist. Deletion oder Überexpression führte zu einer Resistenz gegenüber dem Acetylcholinesterase-Inhibitor Aldicarb und zu erhöhter Empfindlichkeit gegenüber dem GABA-Rezeptor-Antagonisten Pentylentetrazol. Auf genetischer Ebene zeigte sich, dass sng-1 synthetisch mit den Genen für Synaptotagmin-1, Endophilin A sowie Synaptojanin wirkt. Die beobachteten Effekte weisen auf alternative Funktionen in der synaptischen Übertragung hin und unterstützen zugleich die Hypothese, dass SNG-1 im synaptischen Vesikelzyklus eine wichtige Funktion erfüllt, die möglicherweise einem noch unbekannten redundanten Kompartiment-spezifischen Signalweg der synaptischen Transmission zuzuordnen ist.
Resumo:
Tanchirasi (TNKS) è un membro della superfamiglia delle PARP (Poli ADP-Ribosio Polimerasi). TNKS è coinvolta nella stabilizzazione della subunità catalitca del complesso proteico DNA-PK (protein chinasi DNA-dipendente), la DNA-PKcs. Questa proteina è fondamentale per il corretto funzionamento del meccanismo di riparo del DNA chiamato "Saldatura Non Omologa delle Estremità" (NHEJ). La deplezione di TNKS induce una degradazione della DNA-PKcs e una maggiore sensibilità alle radiazioni ionizzanti (RI). TNKS è inoltre un regolatore negativo di axina e di conseguenza un attivatore del pathway di WNT; l'inibizione quindi di TNKS induce anche una inibizione del pathway di WNT. Alterazioni in questo signalling si riscontrano frequentemente nel Medulloblastoma (MB), il tumore cerebrale embrionale più comune dell'infanzia. La radioterapia post-operatoria risulta essere molto efficacia in questa neoplasia, ma causa gravi effetti collaterali e un terzo dei pazienti presenta radioresistenza intrinseca. Un'importante sfida per la ricerca è quindi l'aumento della radiosensibilità tumorale. In questo lavoro, abbiamo studiato gli effetti dell'inibizione farmacologica di TNKS in linee cellulari di MB umano, mediante la small molecule XAV939, potente e specifico inibitore di TNKS. Il trattamento con XAV939 induce una consistente inibizione della capacità proliferativa e clonogenica, non correlata ad un aumento della mortalità cellulare, indicando una bassa tossicità legata alla molecola. Il co-trattamento di XAV939 e RI (γ-ray, dose 2 Gy) causa una ulteriore inibizione della proliferazione cellulare e della capacità di formare colonie. Abbiamo inoltre constatato, mediante Neutral Comet Assay, una minore efficacia nel riparo del DNA in cellule irradiate trattate con XAV939, indicando un effettivo aumento della radiosensibilità in cellule di MB trattate con l'inibitore di TNKS. L'aumentata mortalità cellulare in cellule tumorali trattate con XAV939 e RI ha confermato la nostra ipotesi. Il nostro studio in vitro indica come TNKS possa essere un utile target terapeutico per rendere più efficace l'attuale terapia contro il MB.
Resumo:
Despite the several issues faced in the past, the evolutionary trend of silicon has kept its constant pace. Today an ever increasing number of cores is integrated onto the same die. Unfortunately, the extraordinary performance achievable by the many-core paradigm is limited by several factors. Memory bandwidth limitation, combined with inefficient synchronization mechanisms, can severely overcome the potential computation capabilities. Moreover, the huge HW/SW design space requires accurate and flexible tools to perform architectural explorations and validation of design choices. In this thesis we focus on the aforementioned aspects: a flexible and accurate Virtual Platform has been developed, targeting a reference many-core architecture. Such tool has been used to perform architectural explorations, focusing on instruction caching architecture and hybrid HW/SW synchronization mechanism. Beside architectural implications, another issue of embedded systems is considered: energy efficiency. Near Threshold Computing is a key research area in the Ultra-Low-Power domain, as it promises a tenfold improvement in energy efficiency compared to super-threshold operation and it mitigates thermal bottlenecks. The physical implications of modern deep sub-micron technology are severely limiting performance and reliability of modern designs. Reliability becomes a major obstacle when operating in NTC, especially memory operation becomes unreliable and can compromise system correctness. In the present work a novel hybrid memory architecture is devised to overcome reliability issues and at the same time improve energy efficiency by means of aggressive voltage scaling when allowed by workload requirements. Variability is another great drawback of near-threshold operation. The greatly increased sensitivity to threshold voltage variations in today a major concern for electronic devices. We introduce a variation-tolerant extension of the baseline many-core architecture. By means of micro-architectural knobs and a lightweight runtime control unit, the baseline architecture becomes dynamically tolerant to variations.
Resumo:
In der vorliegenden Arbeit wurde der Einfluss der DNA-Reparaturenzyme NBN, ATM und ATR, die wichtige Funktionen während der Reparatur von DNA-Doppelstrangbrüchen (DSBs) besitzen, auf die Alkylanzien-induzierte Toxizität untersucht. Dabei konnte gezeigt werden, dass verschiedene menschliche Zelllinien, welche eine Beeinträchtigung in einem dieser drei Gene aufweisen, eine erhöhte Sensitivität gegenüber N-Methyl-N'-Nitro-N-Nitrosoguanidin (MNNG) und dem Chemotherapeutikum Temozolomid (TMZ) zeigen. Da das DNA-Reparaturenzym MGMT die Zellen vor der Induktion des Zelltods schützt, kann geschlussfolgert werden, dass die Hypersensitivität der mutierten Zelllinien auf die O6-MeG-Läsion zurückzuführen ist. Es konnte gezeigt werden, dass Mutationen von NBN oder ATM nicht zu einer verminderten Kapazität der Basen-Exzisions-Reparatur (BER) führen. Somit ist die erhöhte Sensitivität der mutierten Zellen sehr wahrscheinlich auf eine verminderte Reparatur der DSBs zurückzuführen, welche durch die O6-MeG-Läsion induziert werden. Damit konnte NBN, ATM und ATR als neue Faktoren in der Abwehr gegen Alkylanzien-induzierte Toxizität identifiziert werden. Dies ist von großer klinischer Bedeutung, da einerseits die drei Proteine als therapeutisches Angriffsziel Bedeutung gewinnen und andererseits verschiedene Tumore, die in der Klinik mit alkylierenden Agenzien behandelt werden, Mutationen in diesen Genen tragen.rnrnWeiterhin wurde beobachtet, dass NBN- und ATM-defiziente Zellen nach Behandlung mit methylierenden Agenzien eine ungewöhnlich hohe Nekrose-Rate aufweisen. Es konnte gezeigt werden, dass diese unabhängig von einer PARP1-Aktivierung induziert wird. Dennoch wurde in den NBN- und ATM-mutierten Zelllinien im Gegensatz zum Wildtyp eine sehr starke Verminderung der ATP-Menge nach MNNG-Behandlung beobachtet. Diese wird durch das Fehlen einer effektiven Aktivierung der AMP-Kinase in diesen Zellen verursacht. Somit kann angenommen werden, dass die hohe Nekrose-Rate auf eine ATP-Depletion zurückzuführen ist, welche durch die nicht ausreichende AMP-Kinase-Aktivierung in diesen Zellen bedingt wird. Daher konnte NBN und ATM als Faktoren des zellulären Schutzes gerichtet gegen die Induktion der „programmierten Nekrose“ identifiziert werden. Dies ist ebenfalls von klinischer Bedeutung. Tragen Tumorzellen von Tumoren, welche mit methylierenden Agenzien behandelt werden, Mutationen in einem dieser Gene, so muss mit einer vermehrten Induktion von Nekrose und daher mit einer Stimulierung des Immunsystems während der Chemotherapie gerechnet werden. Dies wäre einerseits mit erhöhten Nebenwirkungen, die sich insbesondere durch Entzündungsreaktionen äußern, verbunden. Andererseits zeigen verschiedene Arbeiten, dass die Stimulation des Immunsystems durch sterbende Tumorzellen während der Chemotherapie die Tumorregression positiv beeinflussen kann.
Resumo:
Chemotherapeutic SN1‑methylating agents are important anticancer drugs. They induce several covalent modifications in the DNA, from which O6‑methylguanine (O6MeG) is the main toxic lesion. In this work, different hypotheses that have been proposed to explain the mechanism of O6MeG‑triggered cell death were tested. The results of this work support the abortive processing model, which states that abortive post‑replicative processing of O6MeG‑driven mispairs by the DNA mismatch repair (MMR) machinery results in single‑strand gaps in the DNA that, upon a 2nd round of DNA replication, leads to DNA double‑strand break (DSB) formation, checkpoint activation and cell death. In this work, it was shown that O6MeG induces an accumulation of cells in the 2nd G2/M‑phase after treatment. This was accompanied by an increase in DSB formation in the 2nd S/G2/M‑phase, and paralleled by activation of the checkpoint kinases ATR and CHK1. Apoptosis was activated in the 2nd cell cycle. A portion of cells continue proliferating past the 2nd cell cycle, and triggers apoptosis in the subsequent generations. An extension to the original model is proposed, where the persistence of O6MeG in the DNA causes new abortive MMR processing in the 2nd and subsequent generations, where new DSB are produced triggering cell death. Interestingly, removal of O6MeG beyond the 2nd generation lead to a significant, but not complete, reduction in apoptosis, pointing to the involvement of additional mechanisms as a cause of apoptosis. We therefore propose that an increase in genomic instability resulting from accumulation of mis‑repaired DNA damage plays a role in cell death induction. Given the central role of DSB formation in toxicity triggered by chemotherapeutic SN1‑alkylating agents, it was aimed in the second part of this thesis to determine whether inhibition of DSB repair by homologous recombination (HR) or non‑homologous end joining (NHEJ) is a reasonable strategy for sensitizing glioblastoma cells to these agents. The results of this work show that HR down‑regulation in glioblastoma cells impairs the repair of temozolomide (TMZ)‑induced DSB. HR down‑regulation greatly sensitizes cells to cell death following O6‑methylating (TMZ) or O6‑chlorethylating (nimustine) treatment, but not following ionizing radiation. The RNAi mediated inhibition in DSB repair and chemo‑sensitization was proportional to the knockdown of the HR protein RAD51. Chemo‑sensitization was demonstrated for several HR proteins, in glioma cell lines proficient and mutated in p53. Evidence is provided showing that O6MeG is the primary lesion responsible for the increased sensitivity of glioblastoma cells following TMZ treatment, and that inhibition of the resistance marker MGMT restores the chemo‑sensitization achieved by HR down‑regulation. Data are also provided to show that inhibition of DNA‑PK dependent NHEJ does not significantly sensitized glioblastoma cells to TMZ treatment. Finally, the data also show that PARP inhibition with olaparib additionally sensitized HR down‑regulated glioma cells to TMZ. Collectively, the data show that processing of O6MeG through two rounds of DNA replication is required for DSB formation, checkpoint activation and apoptosis induction, and that O6MeG‑triggered apoptosis is also executed in subsequent generations. Furthermore, the data provide proof of principle evidence that down‑regulation of HR is a reasonable strategy for sensitizing glioma cells to killing by O6‑alkylating chemotherapeutics.
Resumo:
PURPOSE: To evaluate diffusion-weighted magnetic resonance (MR) imaging of the human placenta in fetuses with and fetuses without intrauterine growth restriction (IUGR) who were suspected of having placental insufficiency. MATERIALS AND METHODS: The study was approved by the local ethics committee, and written informed consent was obtained. The authors retrospectively evaluated 1.5-T fetal MR images from 102 singleton pregnancies (mean gestation ± standard deviation, 29 weeks ± 5; range, 21-41 weeks). Morphologic and diffusion-weighted MR imaging were performed. A region of interest analysis of the apparent diffusion coefficient (ADC) of the placenta was independently performed by two observers who were blinded to clinical data and outcome. Placental insufficiency was diagnosed if flattening of the growth curve was detected at obstetric ultrasonography (US), if the birth weight was in the 10th percentile or less, or if fetal weight estimated with US was below the 10th percentile. Abnormal findings at Doppler US of the umbilical artery and histopathologic examination of specimens from the placenta were recorded. The ADCs in fetuses with placental insufficiency were compared with those in fetuses of the same gestational age without placental insufficiency and tested for normal distribution. The t tests and Pearson correlation coefficients were used to compare these results at 5% levels of significance. RESULTS: Thirty-three of the 102 pregnancies were ultimately categorized as having an insufficient placenta. MR imaging depicted morphologic changes (eg, infarction or bleeding) in 27 fetuses. Placental dysfunction was suspected in 33 fetuses at diffusion-weighted imaging (mean ADC, 146.4 sec/mm(2) ± 10.63 for fetuses with placental insufficiency vs 177.1 sec/mm(2) ± 18.90 for fetuses without placental insufficiency; P < .01, with one false-positive case). The use of diffusion-weighted imaging in addition to US increased sensitivity for the detection of placental insufficiency from 73% to 100%, increased accuracy from 91% to 99%, and preserved specificity at 99%. CONCLUSION: Placental dysfunction associated with growth restriction is associated with restricted diffusion and reduced ADC. A decreased ADC used as an early marker of placental damage might be indicative of pregnancy complications such as IUGR.
Resumo:
Clothes offer us a commentary on the individual who wears them, and one of those comments deals with gender. Clothing is fundamental to gender, turning male and female bodies into men and women. In the nineteenth century the preoccupation with appear- ances was greater than in previous periods thanks to changes in the social system and a reformulation of gender roles, as well as the popularity of physiognomic theory. Given this increased sensitivity to the gaze, it is curious that men would uniformly adopt the black suit as their garment of choice. This revolution in male fashion was born from contradic- tory motives. On the one hand, the man in black attempted to avoid the gaze so as not to be anyone’s object of desire. An exception to this rule was the elegante, for whom fashion was a way of life. The elegante became a frequent target of the satirical press, which ques- tioned his masculinity. On the other hand, the black suit came simbolize the power of the ascendant middle class because it recalled Spain’s most important monarchs, such as Carlos V and Felipe II. The black suit thus became a polysemic signifier, and the man who wore it attempted, impossibly, to be both the subject and object of the gaze.
Resumo:
African trypanosomes undergo differentiation in order to adapt to the mammalian host and the tsetse fly vector. To characterize the role of a mitogen-activated protein (MAP) kinase homologue, TbMAPK5, in the differentiation of Trypanosoma brucei, we constructed a knockout in procyclic (insect) forms from a differentiation-competent (pleomorphic) stock. Two independent knockout clones proliferated normally in culture and were not essential for other life cycle stages in the fly. They were also able to infect immunosuppressed mice, but the peak parasitemia was 16-fold lower than that of the wild type. Differentiation of the proliferating long slender to the nonproliferating short stumpy bloodstream form is triggered by an autocrine factor, stumpy induction factor (SIF). The knockout differentiated prematurely in mice and in culture, suggestive of increased sensitivity to SIF. In contrast, a null mutant of a cell line refractory to SIF was able to proliferate normally. The differentiation phenotype was partially rescued by complementation with wild-type TbMAPK5 but exacerbated by introduction of a nonactivatable mutant form. Our results indicate a regulatory function for TbMAPK5 in the differentiation of bloodstream forms of T. brucei that might be exploitable as a target for chemotherapy against human sleeping sickness.
Resumo:
The role of irregular cortical firing in neuronal computation is still debated, and it is unclear how signals carried by fluctuating synaptic potentials are decoded by downstream neurons. We examined in vitro frequency versus current (f-I) relationships of layer 5 (L5) pyramidal cells of the rat medial prefrontal cortex (mPFC) using fluctuating stimuli. Studies in the somatosensory cortex show that L5 neurons become insensitive to input fluctuations as input mean increases and that their f-I response becomes linear. In contrast, our results show that mPFC L5 pyramidal neurons retain an increased sensitivity to input fluctuations, whereas their sensitivity to the input mean diminishes to near zero. This implies that the discharge properties of L5 mPFC neurons are well suited to encode input fluctuations rather than input mean in their firing rates, with important consequences for information processing and stability of persistent activity at the network level.