965 resultados para images processing


Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have previously shown that intracardiac acoustic radiation force impulse (ARFI) imaging visualizes tissue stiffness changes caused by radiofrequency ablation (RFA). The objectives of this in vivo study were to (1) quantify measured ARFI-induced displacements in RFA lesion and unablated myocardium and (2) calculate the lesion contrast (C) and contrast-to-noise ratio (CNR) in two-dimensional ARFI and conventional intracardiac echo images. In eight canine subjects, an ARFI imaging-electroanatomical mapping system was used to map right atrial ablation lesion sites and guide the acquisition of ARFI images at these sites before and after ablation. Readers of the ARFI images identified lesion sites with high sensitivity (90.2%) and specificity (94.3%) and the average measured ARFI-induced displacements were higher at unablated sites (11.23 ± 1.71 µm) than at ablated sites (6.06 ± 0.94 µm). The average lesion C (0.29 ± 0.33) and CNR (1.83 ± 1.75) were significantly higher for ARFI images than for spatially registered conventional B-mode images (C = -0.03 ± 0.28, CNR = 0.74 ± 0.68).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The intensity and location of Sun glint in two Medium Resolution Imaging Spectrometer (MERIS) images was modeled using a radiative transfer model that includes elevation features as well as the slope of the sea surface. The results are compared to estimates made using glint flagging and correction approaches used within standard atmospheric correction processing code. The model estimate gives a glint pattern with a similar width but lower peak level than any current method, or than that estimated by a radiative transfer model with surfaces that include slope but not height. The MERIS third reprocessing recently adopted a new slope statistics model for Sun glint correction; the results show that this model is an outlier with respect to both the elevation model and other slope statistics models and we recommend that its adoption should be reviewed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In a typical shoeprint classification and retrieval system, the first step is to segment meaningful basic shapes and patterns in a noisy shoeprint image. This step has significant influence on shape descriptors and shoeprint indexing in the later stages. In this paper, we extend a recently developed denoising technique proposed by Buades, called non-local mean filtering, to give a more general model. In this model, the expected result of an operation on a pixel can be estimated by performing the same operation on all of its reference pixels in the same image. A working pixel’s reference pixels are those pixels whose neighbourhoods are similar to the working pixel’s neighbourhood. Similarity is based on the correlation between the local neighbourhoods of the working pixel and the reference pixel. We incorporate a special instance of this general case into thresholding a very noisy shoeprint image. Visual and quantitative comparisons with two benchmarking techniques, by Otsu and Kittler, are conducted in the last section, giving evidence of the effectiveness of our method for thresholding noisy shoeprint images.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper we present a new method for simultaneously determining three dimensional (3-D) shape and motion of a non-rigid object from uncalibrated two dimensional (2- D) images without assuming the distribution characteristics. A non-rigid motion can be treated as a combination of a rigid rotation and a non-rigid deformation. To seek accurate recovery of deformable structures, we estimate the probability distribution function of the corresponding features through random sampling, incorporating an established probabilistic model. The fitting between the observation and the projection of the estimated 3-D structure will be evaluated using a Markov chain Monte Carlo based expectation maximisation algorithm. Applications of the proposed method to both synthetic and real image sequences are demonstrated with promising results.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A new, front-end image processing chip is presented for real-time small object detection. It has been implemented using a 0.6 µ, 3.3 V CMOS technology and operates on 10-bit input data at 54 megasamples per second. It occupies an area of 12.9 mm×13.6 mm (including pads), dissipates 1.5 W, has 92 I/O pins and is to be housed in a 160-pin ceramic quarter flat-pack. It performs both one- and two-dimensional FIR filtering and a multilayer perceptron (MLP) neural network function using a reconfigurable array of 21 multiplication-accumulation cells which corresponds to a window size of 7×3. The chip can cope with images of 2047 pixels per line and can be cascaded to cope with larger window sizes. The chip performs two billion fixed point multiplications and additions per second.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The increasing demand for fast air transportation around the clock
has increased the number of night flights in civil aviation over
the past few decades. In night aviation, to land an aircraft, a
pilot needs to be able to identify an airport. The approach
lighting system (ALS) at an airport is used to provide
identification and guidance to pilots from a distance. ALS
consists of more than $100$ luminaires which are installed in a
defined pattern following strict guidelines by the International
Civil Aviation Organization (ICAO). ICAO also has strict
regulations for maintaining the performance level of the
luminaires. However, once installed, to date there is no automated
technique by which to monitor the performance of the lighting. We
suggest using images of the lighting pattern captured using a camera
placed inside an aircraft. Based on the information contained
within these images, the performance of the luminaires has to be
evaluated which requires identification of over $100$ luminaires
within the pattern of ALS image. This research proposes analysis
of the pattern using morphology filters which use a variable
length structuring element (VLSE). The dimension of the VLSE changes
continuously within an image and varies for different images.
A novel
technique for automatic determination of the VLSE is proposed and
it allows successful identification of the luminaires from the
image data as verified through the use of simulated and real data.