849 resultados para hybrid dynamical system
Resumo:
This essay addresses the hitches and glitches in the hybrid instruction system of teaching and learning for large-enrollment courses. This new instructional methodology asks facilitators to redesign their entire traditional teaching and learning practices. The nature of subject to be taught via the hybrid mode further affects the success rate of the modules from the time of inception to launch to actual delivery and completion of the course. The entire process involves undoing the old habits and methodologies and instructors picking up new skills, along with the right motivation to take up the task. The course planning and delivery require a substantial commitment in terms of hours from the instructors catering to large-enrollment courses, along with pursuing their routine roles at the campuses. From the pupil’s perspective, the response varies, as hybrid learning seeks self-discipline and time management skills from the learner. After the initial roadblocks, students enjoy hybrid learning if the course structure and instructions are simple and the course content flexible and varied. We will study the problems and possible solutions to the success of the hybrid teaching–learning system at each stage where large number of students enrolled for a specific course.
Resumo:
This paper considers the question of designing a fully image-based visual servo control for a class of dynamic systems. The work is motivated by the ongoing development of image-based visual servo control of small aerial robotic vehicles. The kinematics and dynamics of a rigid-body dynamical system (such as a vehicle airframe) maneuvering over a flat target plane with observable features are expressed in terms of an unnormalized spherical centroid and an optic flow measurement. The image-plane dynamics with respect to force input are dependent on the height of the camera above the target plane. This dependence is compensated by introducing virtual height dynamics and adaptive estimation in the proposed control. A fully nonlinear adaptive control design is provided that ensures asymptotic stability of the closed-loop system for all feasible initial conditions. The choice of control gains is based on an analysis of the asymptotic dynamics of the system. Results from a realistic simulation are presented that demonstrate the performance of the closed-loop system. To the author's knowledge, this paper documents the first time that an image-based visual servo control has been proposed for a dynamic system using vision measurement for both position and velocity.
Resumo:
Introduction: Why we need to base childrens’ sport and physical education on the principles of dynamical systems theory and ecological psychology As the childhood years are crucial for developing many physical skills as well as establishing the groundwork leading to lifelong participation in sport and physical activities, (Orlick & Botterill, 1977, p. 11) it is essential to examine current practice to make sure it is meeting the needs of children. In recent papers (e.g. Renshaw, Davids, Chow & Shuttleworth, in press; Renshaw, Davids, Chow & Hammond, in review; Chow et al., 2009) we have highlighted that a guiding theoretical framework is needed to provide a principled approach to teaching and coaching and that the approach must be evidence- based and focused on mechanism and not just on operational issues such as practice, competition and programme management (Lyle, 2002). There is a need to demonstrate how nonlinear pedagogy underpins teaching and coaching practice for children given that some of the current approaches underpinning children’s sport and P.E. may not be leading to optimal results. For example, little time is spent undertaking physical activities (Tinning, 2006) and much of this practice is not representative of the competition demands of the performance environment (Kirk & McPhail, 2002; Renshaw et al., 2008). Proponents of a non- linear pedagogy advocate the design of practice by applying key concepts such as the mutuality of the performer and environment, the tight coupling of perception and action, and the emergence of movement solutions due to self organisation under constraints (see Renshaw, et al., in press). As skills are shaped by the unique interacting individual, task and environmental constraints in these learning environments, small changes to individual structural (e.g. factors such as height or limb length) or functional constraints (e.g. factors such as motivation, perceptual skills, strength that can be acquired), task rules, equipment, or environmental constraints can lead to dramatic changes in movement patterns adopted by learners to solve performance problems. The aim of this chapter is to provide real life examples for teachers and coaches who wish to adopt the ideas of non- linear pedagogy in their practice. Specifically, I will provide examples related to specific issues related to individual constraints in children and in particular the unique challenges facing coaches when individual constraints are changing due to growth and development. Part two focuses on understanding how cultural environmental constraints impact on children’s sport. This is an area that has received very little attention but plays a very important part in the long- term development of sporting expertise. Finally, I will look at how coaches can manipulate task constraints to create effective learning environments for young children.
Resumo:
Displacement of conventional synchronous generators by non-inertial units such as wind or solar generators will result in reduced-system inertia affecting under-frequency response. Frequency control is important to avoid equipment damage, load shedding, and possible blackouts. Wind generators along with energy storage systems can be used to improve the frequency response of low-inertia power system. This paper proposes a fuzzy-logic based frequency controller (FFC) for wind farms augmented with energy storage systems (wind-storage system) to improve the primary frequency response in future low-inertia hybrid power system. The proposed controller provides bidirectional real power injection using system frequency deviations and rate of change of frequency (RoCoF). Moreover, FFC ensures optimal use of energy from wind farms and storage units by eliminating the inflexible de-loading of wind energy and minimizing the required storage capacity. The efficacy of the proposed FFC is verified on the low-inertia hybrid power system.
Resumo:
A scheme for integration of stand-alone INS and GPS sensors is presented, with data interchange over an external bus. This ensures modularity and sensor interchangeability. Use of a medium-coupled scheme reduces data flow and computation, facilitating use in surface vehicles. Results show that the hybrid navigation system is capable of delivering high positioning accuracy.
Resumo:
The paper deals with a rational approach to the development of general design criteria for non-dissipative vibration isolation systems. The study covers straight-through springmass systems as well as branched ones with dynamic absorbers. Various design options, such as the addition of another spring-mass pair, replacement of an existing system by one with more spring-mass pairs for the same space and material requirements, provision of one or more dynamic absorbers for the desired frequency range, etc., are investigated quantitatively by means of an algebraic algorithm which enables one to write down straightaway the velocity ratio and hence transmissibility of a linear dynamical system in terms of the constituent parameters.
Resumo:
An analysis and design study using Shape Memory Alloy (SMA) wire integrated beam and its buckling shape control are reported. The dynamical system performance is analyzed with a mathematical set-up involving nonlocal and rate sensitive kinetics of phase transformation in the SMA wire. A standard phenomenological constitutive model reported by Brinson (1993) is modified by considering certain consistency conditions in the material property tensors and by eliminating spurious singularity. Considering the inhomogeneity effects, a finite element model of the SMA wire is developed. Simulations are carried out to study the buckling shape control of a beam integrated with SMA wire.
Resumo:
A literal Liapunov stability analysis of a spacecraft with flexible appendages often requires a division of the associated dynamic potential into as many dependent parts as the number of appendages. First part of this paper exposes the stringency in the stability criteria introduced by such a division and shows it to be removable by a “reunion policy.” The policy enjoins the analyst to piece together the sets of criteria for each part. Employing reunion the paper then compares four methods of the Liapunov stability analysis of hybrid dynamical systems illustrated by an inertially coupled, damped, gravity stabilized, elastic spacecraft with four gravity booms having tip masses and a damper rod, all skewed to the orbital plane. The four methods are the method of test density function, assumed modes, and two and one-integral coordinates. Superiority of one-integral coordinate approach is established here. The design plots demonstrate how elastic effects delimit the satellite boom length.
Resumo:
A linear state feedback gain vector used in the control of a single input dynamical system may be constrained because of the way feedback is realized. Some examples of feedback realizations which impose constraints on the gain vector are: static output feedback, constant gain feedback for several operating points of a system, and two-controller feedback. We consider a general class of problems of stabilization of single input dynamical systems with such structural constraints and give a numerical method to solve them. Each of these problems is cast into a problem of solving a system of equalities and inequalities. In this formulation, the coefficients of the quadratic and linear factors of the closed-loop characteristic polynomial are the variables. To solve the system of equalities and inequalities, a continuous realization of the gradient projection method and a barrier method are used under the homotopy framework. Our method is illustrated with an example for each class of control structure constraint.
Resumo:
Some experimental results on the recognition of three-dimensional wire-frame objects are presented. In order to overcome the limitations of a recent model, which employs radial basis functions-based neural networks, we have proposed a hybrid learning system for object recognition, featuring: an optimization strategy (simulated annealing) in order to avoid local minima of an energy functional; and an appropriate choice of centers of the units. Further, in an attempt to achieve improved generalization ability, and to reduce the time for training, we invoke the principle of self-organization which utilises an unsupervised learning algorithm.
Resumo:
Over the past decade, many powerful data mining techniques have been developed to analyze temporal and sequential data. The time is now fertile for addressing problems of larger scope under the purview of temporal data mining. The fourth SIGKDD workshop on temporal data mining focused on the question: What can we infer about the structure of a complex dynamical system from observed temporal data? The goals of the workshop were to critically evaluate the need in this area by bringing together leading researchers from industry and academia, and to identify promising technologies and methodologies for doing the same. We provide a brief summary of the workshop proceedings and ideas arising out of the discussions.
Resumo:
Helix helix interactions are fundamental to many biological signals and systems and are found in homo- or heteromultimerization of signaling molecules as well as in the process of virus entry into the host. In HIV, virus-host membrane fusion during infection is mediated by the formation of six-helix bundles (6HBs) from homotrimers of gp41, from which a number of synthetic peptides have been derived as antagonists of virus entry. Using a yeast surface two-hybrid (YS2H) system, a platform designed to detect protein-protein interactions occurring through a secretory pathway, we reconstituted 6HB complexes on the yeast surface, quantitatively measured the equilibrium and kinetic constants of soluble 6HB, and delineated the residues influencing homo-oligomeric and hetero-oligomeric coiled-coil interactions. Hence, we present YS2H as a platform for the facile characterization and design of antagonistic peptides for inhibition of HIV and many other enveloped viruses relying on membrane fusion for infection, as well as cellular signaling events triggered by hetero-oligomeric coiled coils.
Resumo:
Sessile droplets on a vibrating substrate are investigated focusing on axisymmetric oscillations with pinned contact line. Proper orthogonal decomposition is employed to identify the different modes of droplet shape oscillation and quantitatively assess the droplet oscillation and spectral response. We offer the first experimental evidence for the analogy of an oscillating sessile droplet with a non-linear spring mass damper system. The qualitative and quantitative agreement of amplitude response and phase response curves and limit cycles of the model dynamical system with that observed experimentally suggest that the bulk oscillations in the fundamental mode of a sessile droplet can be very well modeled by a Duffing oscillator with a hard spring, especially near the resonance. The red shift of the resonance peak with an increase in the glycerol concentration is clearly evidenced by both the experimental and predicted amplitude response curves. The influence of various operational parameters such as excitation frequency and amplitude and fluid properties on the droplet oscillation characteristics is adequately captured by the model. (C) 2014 Elsevier Ltd. All rights reserved.
Bayesian parameter identification in dynamic state space models using modified measurement equations
Resumo:
When Markov chain Monte Carlo (MCMC) samplers are used in problems of system parameter identification, one would face computational difficulties in dealing with large amount of measurement data and (or) low levels of measurement noise. Such exigencies are likely to occur in problems of parameter identification in dynamical systems when amount of vibratory measurement data and number of parameters to be identified could be large. In such cases, the posterior probability density function of the system parameters tends to have regions of narrow supports and a finite length MCMC chain is unlikely to cover pertinent regions. The present study proposes strategies based on modification of measurement equations and subsequent corrections, to alleviate this difficulty. This involves artificial enhancement of measurement noise, assimilation of transformed packets of measurements, and a global iteration strategy to improve the choice of prior models. Illustrative examples cover laboratory studies on a time variant dynamical system and a bending-torsion coupled, geometrically non-linear building frame under earthquake support motions. (C) 2015 Elsevier Ltd. All rights reserved.
Resumo:
Enhancement of localized electric field near metal (plasmonic) nanostructures can have various interesting applications in sensing, imaging, photovoltage generation etc., for which significant efforts are aimed towards developing plasmonic systems with well designed and large electromagnetic response. In this paper, we discuss the wafer scale fabrication and optical characterization of a unique three dimensional plasmonic material. The near field enhancement in the visible range of the electromagnetic spectrum obtained in these structures (order of 106), is close to the fundamental limit that can be obtained in this and similar EM field enhancement schemes. The large near field enhancement has been reflected in a huge Raman signal of graphene layer in close proximity to the plasmonic system, which has been validated with FEM simulations. We have integrated graphene photodetectors with this material to obtain record photovoltage generation, with responsivity as high as A/W. As far as we know, this is the highest sensitivity obtained in any plasmonic-graphene hybrid photodetection system till date.