942 resultados para human regulatory T-cells
Resumo:
Phenotypic and functional cell properties are usually analyzed at the level of defined cell populations but not single cells. Yet, large differences between individual cells may have important functional consequences. It is likely that T-cell-mediated immunity depends on the polyfunctionality of individual T cells, rather than the sum of functions of responding T-cell subpopulations. We performed highly sensitive single-cell gene expression profiling, allowing the direct ex vivo characterization of individual virus-specific and tumor-specific T cells from healthy donors and melanoma patients. We have previously shown that vaccination with the natural tumor peptide Melan-A-induced T cells with superior effector functions as compared with vaccination with the analog peptide optimized for enhanced HLA-A*0201 binding. Here we found that natural peptide vaccination induced tumor-reactive CD8 T cells with frequent coexpression of both memory/homing-associated genes (CD27, IL7R, EOMES, CXCR3, and CCR5) and effector-related genes (IFNG, KLRD1, PRF1, and GZMB), comparable with protective Epstein-Barr virus-specific and cytomegalovirus-specific T cells. In contrast, memory/homing-associated and effector-associated genes were less frequently coexpressed after vaccination with the analog peptide. Remarkably, these findings reveal a previously unknown level of gene expression diversity among vaccine-specific and virus-specific T cells with the simultaneous coexpression of multiple memory/homing-related and effector-related genes by the same cell. Such broad functional gene expression signatures within antigen-specific T cells may be critical for mounting efficient responses to pathogens or tumors. In summary, direct ex vivo high-resolution molecular characterization of individual T cells provides key insights into the processes shaping the functional properties of tumor-specific and virus-specific T cells.
Resumo:
The Staphylococcus aureus fibronectin (Fn) -binding protein A (FnBPA) is involved in bacterium-endothelium interactions which is one of the crucial events leading to infective endocarditis (IE). We previously showed that the sole expression of S. aureus FnBPA was sufficient to confer to non-invasive Lactococcus lactis bacteria the capacity to invade human endothelial cells (ECs) and to launch the typical endothelial proinflammatory and procoagulant responses that characterize IE. In the present study we further questioned whether these bacterium-EC interactions could be reproduced by single or combined FnBPA sub-domains (A, B, C or D) using a large library of truncated FnBPA constructs expressed in L. lactis. Significant invasion of cultured ECs was found for L. lactis expressing the FnBPA subdomains CD (aa 604-877) or A4(+16) (aa 432-559). Moreover, this correlates with the capacity of these fragments to elicit in vitro a marked increase in EC surface expression of both ICAM-1 and VCAM-1 and secretion of the CXCL8 chemokine and finally to induce a tissue factor-dependent endothelial coagulation response. We thus conclude that (sub)domains of the staphylococcal FnBPA molecule that express Fn-binding modules, alone or in combination, are sufficient to evoke an endothelial proinflammatory as well as a procoagulant response and thus account for IE severity.
Resumo:
Wnt and Notch signaling have long been established as strongly oncogenic in the mouse mammary gland. Aberrant expression of several Wnts and other components of this pathway in human breast carcinomas has been reported, but evidence for a causative role in the human disease has been missing. Here we report that increased Wnt signaling, as achieved by ectopic expression of Wnt-1, triggers the DNA damage response (DDR) and an ensuing cascade of events resulting in tumorigenic conversion of primary human mammary epithelial cells. Wnt-1-transformed cells have high telomerase activity and compromised p53 and Rb function, grow as spheres in suspension, and in mice form tumors that closely resemble medullary carcinomas of the breast. Notch signaling is up-regulated through a mechanism involving increased expression of the Notch ligands Dll1, Dll3, and Dll4 and is required for expression of the tumorigenic phenotype. Increased Notch signaling in primary human mammary epithelial cells is sufficient to reproduce some aspects of Wnt-induced transformation. The relevance of these findings for human breast cancer is supported by the fact that expression of Wnt-1 and Wnt-4 and of established Wnt target genes, such as Axin-2 and Lef-1, as well as the Notch ligands, such as Dll3 and Dll4, is up-regulated in human breast carcinomas.
Resumo:
Claudin-1 (CLDN1) is a structural tight junction (TJ) protein and is expressed in differentiating keratinocytes and Langerhans cells in the epidermis. Our objective was to identify immunoreactive CLDN1 in human epidermal Langerhans cells and to examine the pattern of epidermal Langerhans cells in genetic human CLDN1 deficiency [neonatal ichthyosis, sclerosing cholangitis (NISCH) syndrome]. Epidermal cells from healthy human skin labelled with CLDN1-specific antibodies were analysed by confocal laser immunofluorescence microscopy and flow cytometry. Skin biopsy sections of two patients with NISCH syndrome were stained with an antibody to CD1a expressed on epidermal Langerhans cells. Epidermal Langerhans cells and a subpopulation of keratinocytes from healthy skin were positive for CLDN1. The gross number and distribution of epidermal Langerhans cells of two patients with molecularly confirmed NISCH syndrome, however, was not grossly altered. Therefore, CLDN1 is unlikely to play a critical role in migration of Langerhans cells (or their precursors) to the epidermis or their positioning within the epidermis. Our findings do not exclude a role of this TJ molecule once Langerhans cells have left the epidermis for draining lymph nodes.
Resumo:
Cytotoxic T lymphocyte-associated antigen-4 (CTLA-4; CD152) is of pivotal importance for self-tolerance, with deficiency or unfavorable polymorphisms leading to autoimmune disease. Tolerance to self-antigens is achieved through thymic deletion of highly autoreactive conventional T (Tconv) cells and generation of FoxP3(+) regulatory T (Treg) cells. The main costimulatory molecule, CD28, augments the negative selection of Tconv cells and promotes the generation of FoxP3(+) Treg cells. The role of its antagonistic homolog CTLA-4, however, remains a topic of debate. To address this topic, we investigated the thymic development of T cells in the presence and absence of CTLA-4 in a T-cell receptor (TCR) transgenic mouse model specific for the myelin basic protein peptide Ac1-9. We reveal that CTLA-4 is expressed in the corticomedullary region of the thymus. Its absence alters the response of CD4(+)CD8(-) thymocytes to self-antigen recognition, which affects the quantity of the Treg cells generated and broadens the repertoire of peripheral Tconv cells. T-cell repertoire alteration after deletion of CTLA-4 results from changes in TCR Vα and Jα segment selection as well as CDR3α composition in Tconv and Treg cells. CTLA-4, therefore, regulates the early development of self-reactive T cells in the thymus and plays a key role in central tolerance.
Resumo:
The transcriptional coactivator peroxisome proliferator-activated receptor-gamma coactivator 1 alpha (PGC-1α) is a chief activator of mitochondrial and metabolic programs and protects against atrophy in skeletal muscle (skm). Here we tested whether PGC-1α overexpression could restructure the transcriptome and metabolism of primary cultured human skm cells, which display a phenotype that resembles the atrophic phenotype. An oligonucleotide microarray analysis was used to reveal the effects of PGC-1α on the whole transcriptome. Fifty-three different genes showed altered expression in response to PGC-1α: 42 upregulated and 11 downregulated. The main gene ontologies (GO) associated with the upregulated genes were mitochondrial components and processes and this was linked with an increase in COX activity, an indicator of mitochondrial content. Furthermore, PGC-1α enhanced mitochondrial oxidation of palmitate and lactate to CO2, but not glucose oxidation. The other most significantly associated GOs for the upregulated genes were chemotaxis and cytokine activity, and several cytokines, including IL-8/CXCL8, CXCL6, CCL5 and CCL8, were within the most highly induced genes. Indeed, PGC-1α highly increased IL-8 cell protein content. The most upregulated gene was PVALB, which is related to calcium signaling. Potential metabolic regulators of fatty acid and glucose storage were among mainly regulated genes. The mRNA and protein level of FITM1/FIT1, which enhances the formation of lipid droplets, was raised by PGC-1α, while in oleate-incubated cells PGC-1α increased the number of smaller lipid droplets and modestly triglyceride levels, compared to controls. CALM1, the calcium-modulated δ subunit of phosphorylase kinase, was downregulated by PGC-1α, while glycogen phosphorylase was inactivated and glycogen storage was increased by PGC-1α. In conclusion, of the metabolic transcriptome deficiencies of cultured skm cells, PGC-1α rescued the expression of genes encoding mitochondrial proteins and FITM1. Several myokine genes, including IL-8 and CCL5, which are known to be constitutively expressed in human skm cells, were induced by PGC-1α.
Resumo:
We describe herein some immunological properties of human fetal bone cells recently tested for bone tissue-engineering applications. Adult mesenchymal stem cells (MSCs) and osteoblasts were included in the study for comparison. Surface markers involved in bone metabolism and immune recognition were analyzed using flow cytometry before and after differentiation or treatment with cytokines. Immunomodulatory properties were studied on activated peripheral blood mononuclear cells (PBMCs). The immuno-profile of fetal bone cells was further investigated at the gene expression level. Fetal bone cells and adult MSCs were positive for Stro-1, alkaline phosphatase, CD10, CD44, CD54, and beta2-microglobulin, but human leukocyte antigen (HLA)-I and CD80 were less present than on adult osteoblasts. All cells were negative for HLA-II. Treatment with recombinant human interferon gamma increased the presence of HLA-I in adult cells much more than in fetal cells. In the presence of activated PBMCs, fetal cells had antiproliferative effects, although with patterns not always comparable with those of adult MSCs and osteoblasts. Because of the immunological profile, and with their more-differentiated phenotype than of stem cells, fetal bone cells present an interesting potential for allogeneic cell source in tissue-engineering applications.
Resumo:
Cycling lymphocytes may express the enzyme telomerase which is involved in maintenance of telomere length and cell proliferation potential. In CD8(+) T cells freshly isolated from peripheral blood, we found that in vivo cycling cells expressed HLA-DR. Furthermore, CD28-positive cells are known to have longer telomeres than CD28-negative T cells. Therefore we used HLA-DR- and CD28-specific antibodies to sort CD8(+) T cells and measure telomerase activity ex vivo. Relatively high levels of telomerase activity were found in HLA-DR/CD28 double-positive cells. In contrast, HLA-DR-negative and CD28-negative cells had almost no telomerase activity. In summary, HLA-DR expression correlates with proliferation, and CD28 expression with proliferative potential. We have previously identified that ex vivo cytolytic CD8(+) T cells are CD56 (NCAM) positive. Here we show that HLA-DR(+) cells were rarely CD56(+) and vice versa. This demonstrates that telomerase-expressing and cytolytic CD8(+) T cells can be separated on the basis of the cell surface markers HLA-DR and CD56. Thus, activated CD8(+) T cells specialize and exert distinct functions correlating with surface molecule expression.
Resumo:
Antitumor immunity is strongly influenced by the balance of tumor antigen-specific effector and regulatory T cells. However, the impact that vaccine adjuvants have in regulating the balance of antigen-specific T cell populations is not well understood. We found that antigen-specific T regulatory cells (Treg) were induced following subcutaneous vaccination with either OVA or melanoma-derived peptides, with a restricted expansion of effector T cells. Addition of the adjuvants CpG-ODN or Poly(I:C) preferentially amplified effector T cells over Tregs, dramatically increasing the antigen-specific T effector:Treg ratios and inducing polyfunctional effector cells. In contrast, two other adjuvants, imiquimod and Quil A saponin, favored an expansion of antigen-specific Tregs and failed to increase effector T cell:Treg ratios. Following therapeutic vaccination of tumor-bearing mice, high ratios of tumor-specific effector T cells:Tregs in draining lymph nodes were associated with enhanced CD8+ T cell infiltration at the tumor site and a durable rejection of tumors. Vaccine formulations of peptide+CpG-ODN or Poly(I:C) induced selective production of pro-inflammatory Type I cytokines early after vaccination. This environment promoted CD8+ and CD4+ effector T cell expansion over that of antigen-specific Tregs, tipping the effector T cell to Treg balance to favor effector cells. Our findings advance understanding of the influence of different adjuvants on T cell populations, facilitating the rational design of more effective cancer vaccines.
Resumo:
Dendritic cells (DCs) can release microvesicles, but the latter's numbers, size, and fate are unclear. Fluorescently labeled DCs were visualized by laser-scanning microscopy. Using a Surpass algorithm, we were able to identify and quantify per cell several hundred microvesicles released from the surface of stimulated DCs. We show that most of these microvesicles are not of endocytic origin but result from budding of the plasma membrane, hence their name, exovesicle. Using a double vital staining, we show that exovesicles isolated from activated DCs can fuse with the membrane of resting DCs, thereby allowing them to present alloantigens to lymphocytes. We concluded that, within a few hours from their release, exovesicles may amplify local or distant adaptive immunological response.
Resumo:
Atherosclerosis, which is influenced by both traditional and nontraditional cardiovascular risk factors and has been characterized as an inflammatory process, is considered to be the main cause of the elevated cardiovascular risk associated with chronic kidney disease. The inflammatory component of atherosclerosis can be separated into an innate immune response involving monocytes and macrophages that respond to the excessive uptake of lipoproteins and an adaptive immune response that involves antigen-specific T cells. Concurrent with the influx of immune cells to the site of atherosclerotic lesion, the role of the adaptive immune response gradually increases. One of those cells are represented by the CD4+/CD25+ Tregs, which play indispensable roles in the maintenance of natural self-tolerance and negative control of pathological, as well as physiological, immune responses. Altered self-antigens such as oxidized LDLs may induce the development of CD4+/CD25+ Tregs with atheroprotective properties. However, atherosclerosis may be promoted by an imbalance between regulatory and pathogenic immunity that may be represented by the low expression of the forkhead box transcription factor (Foxp3) in CD4+/CD25+ Tregs. Such a defect may break immunologic tolerance and alter both specific and bystander immune suppression, leading to exacerbation of plaque development. Patients with end-stage kidney disease (ESKD) display a cellular immune dysfunction and accelerated atherosclerosis. Uremic solutes that accumulate during ESKD may be involved in these processes. In patients with ESKD and especially in those that are chronically hemodialyzed, oxidative stress induced by oxidized LDLs may increase CD4+/CD25+ Treg sensitivity to Fas-mediated apoptosis as a consequence of specific dysregulation of IL-2 expression. This review will focus on the current state of knowledge regarding the influence of CD4+/CD25+ Tregs on atherogenesis in patients with ESKD, and the potential effect of statins on the circulating number and the functional properties of these cells.
Resumo:
Regulatory T cells control immune responses to self- and foreign-antigens and play a major role in maintaining the balance between immunity and tolerance. This article reviews recent key developments in the field of CD4+CD25+Foxp3+ regulatory T (TREG) cells. It presents their characteristics and describes their range of activity and mechanisms of action. Some models of diseases triggered by the imbalance between TREG cells and effector pathogenic T cells are described and their potential therapeutic applications in humans are outlined.
Resumo:
The aim of this study was to culture human fetal bone cells (dedicated cell banks of fetal bone derived from 14 week gestation femurs) within both hyaluronic acid gel and collagen foam, to compare the biocompatibility of both matrices as potential delivery systems for bone engineering and particularly for oral application. Fetal bone cell banks were prepared from one organ donation and cells were cultured for up to 4 weeks within hyaluronic acid (Mesolis(®)) and collagen foams (TissueFleece(®)). Cell survival and differentiation were assessed by cell proliferation assays and histology of frozen sections stained with Giemsa, von Kossa and ALP at 1, 2 and 4 weeks of culture. Within both materials, fetal bone cells could proliferate in three-dimensional structure at ∼70% capacity compared to monolayer culture. In addition, these cells were positive for ALP and von Kossa staining, indicating cellular differentiation and matrix production. Collagen foam provides a better structure for fetal bone cell delivery if cavity filling is necessary and hydrogels would permit an injectable technique for difficult to treat areas. In all, there was high biocompatibility, cellular differentiation and matrix deposition seen in both matrices by fetal bone cells, allowing for easy cell delivery for bone stimulation in vivo. Copyright © 2011 John Wiley & Sons, Ltd.
Resumo:
BACKGROUND: 5,10,15,20-Tetrakis(m-hydroxyphenyl)chlorin (mTHPC)-mediated photodynamic therapy (PDT) has shown insufficient tumor selectivity for the treatment of pleural mesothelioma. Tumor selectivity of mTHPC-PDT may be enhanced in the presence of the TAT-RasGAP(317-326) peptide which has the potential to specifically sensitize tumor cells to cytostatic agents. MATERIALS AND METHODS: H-meso-1 and human fibroblast cell cultures, respectively, were exposed to two different mTHPC doses followed by light delivery with and without TAT-RasGAP(317-326) administration. mTHPC was added to the cultures at a concentration of 0.04microg/ml and 0.10microg/ml, respectively, 24h before laser light illumination at 652nm (3J/cm(2), 40mW/cm(2)). TAT-RasGAP(317-326) was added to the cultures immediately after light delivery at a concentration of 20microM. The apoptosis rate was determined by scoring the cells displaying pycnotic nuclei. Cell viability was measured by using a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay. RESULTS: Light delivery associated with 0.04microg/ml mTHPC resulted in a significantly higher apoptosis rate in the presence of TAT-RasGAP(317-326) than without in H-meso-1 cells (p<0.05) but not in fibroblasts. In contrast, 1.0microg/ml mTHPC and light resulted in a significantly higher apoptosis rate in both H-meso-1 cells and fibroblasts as compared to controls (p<0.05) but the addition of TAT-RasGAP(317-326) did not lead to a further significant increase of the apoptosis rate of both H-meso-1 cells and fibroblasts as compared to mTHPC and light delivery alone. CONCLUSION: TAT-RasGAP(317-326) selectively enhanced the effect of mTHPC and light delivery on H-meso-1 cells but not on fibroblasts. However, this effect was mTHPC dose-dependent and occurred only at a low sensitizer dose.