909 resultados para gluconate copper
Resumo:
The complexing ability of a new series of ligands, β-N-arylimine hydrazones, toward Ni (II) and Cu (II) ions has been studied. The isolated complexes are characterised on the basis of elemental analysis, spectroscopic methods and magnetic susceptibility measurements. The ligands are notentially bidentate in character coordinating to divalent metal ions through the N1 and N5 nitrogens. Square planar geometry of the metal ions is suggested on the basis of experimental evidence.
Resumo:
Es wird die Temperaturabhiingigkeit der CI35-Kernquadrupolresonanz in Natriumchlorat und Kupferchlorat im Temperature von 77 bis 300 °K untersucht. Es wird gezeigt, daß die Annahmen, die in der Theorie von Bayer gemacht werden, fur Chlorate gelten. Die Frequenz der Torsionsschwingungen der ClO3-Gruppe wird folglich mit dieser Theorie berechnet. Der berechnete Wert der Torsionsfrequenz stimmt gut mit vorhandenen Werten der Ramanspektroskopie überein.
Resumo:
Transfer from aluminum to copper metallization and decreasing feature size of integrated circuit devices generated a need for new diffusion barrier process. Copper metallization comprised entirely new process flow with new materials such as low-k insulators and etch stoppers, which made the diffusion barrier integration demanding. Atomic Layer Deposition technique was seen as one of the most promising techniques to deposit copper diffusion barrier for future devices. Atomic Layer Deposition technique was utilized to deposit titanium nitride, tungsten nitride, and tungsten nitride carbide diffusion barriers. Titanium nitride was deposited with a conventional process, and also with new in situ reduction process where titanium metal was used as a reducing agent. Tungsten nitride was deposited with a well-known process from tungsten hexafluoride and ammonia, but tungsten nitride carbide as a new material required a new process chemistry. In addition to material properties, the process integration for the copper metallization was studied making compatibility experiments on different surface materials. Based on these studies, titanium nitride and tungsten nitride processes were found to be incompatible with copper metal. However, tungsten nitride carbide film was compatible with copper and exhibited the most promising properties to be integrated for the copper metallization scheme. The process scale-up on 300 mm wafer comprised extensive film uniformity studies, which improved understanding of non-uniformity sources of the ALD growth and the process-specific requirements for the ALD reactor design. Based on these studies, it was discovered that the TiN process from titanium tetrachloride and ammonia required the reactor design of perpendicular flow for successful scale-up. The copper metallization scheme also includes process steps of the copper oxide reduction prior to the barrier deposition and the copper seed deposition prior to the copper metal deposition. Easy and simple copper oxide reduction process was developed, where the substrate was exposed gaseous reducing agent under vacuum and at elevated temperature. Because the reduction was observed efficient enough to reduce thick copper oxide film, the process was considered also as an alternative method to make the copper seed film via copper oxide reduction.
Resumo:
The nitrosation of monophenylamido substututed quadridentate Schiff base complexes of copper(II) are observed to adopt N-bonded isonitroso coordination whereas the phenylisocyanation of the corresponding mononitrosated quadridentate complexes are found to prefer O-bonded isonitroso coordination.
Resumo:
We report the field emission from carbon nanofibers (CNFs) grown directly on cylindrical copper by a simple pyrolysis technique. The turn-on field is 0.17 V/µm and the emission current density is 0.9 mA/cm2 at 0.35 V/µm. The emission current is stable at a field of 0.35 V/µm and 6.5×10−6 Torr. The excellent field emission behavior is attributed to the sp2 phase in CNFs and the stable emission is due to the direct growth. The direct growth on cylindrical cathode is advantageous for field emission. ©2009 American Institute of Physics.
Resumo:
ESR investigations are reported in single crystals of copper diethyldithiophosphate, magnetically diluted with the corresponding diamagnetic nickel complex. The spectrum at normal gain shows hyperfine components from 63Cu, 65Cu, and 31P nuclei. At much higher gain, hyperfine interaction from 33S nuclei in the ligand is detected. The spin Hamiltonian parameters relating to copper show tetragonal symmetry. The measured parameters are g = 2.085, g =2.025, A63Cu = 149.6 × 10−4 cm−1, A65Cu = 160.8 × 10−4 cm−1, BCu = 32.5 × 10−4 cm−1 and QCu 5.5 × 10−4cm−1. The 31P interaction is isotropic with a coupling constant AP = 9.6 × 10−4 cm−1. Angular variation of the 33S lines shows two different hyperfine tensors indicating the presence of two chemically inequivalent Cu S bonds. The experimentally determined hyperfine constants are A =34.9×10−4 cm−1, B =26.1×10−4 cm−1, A =60.4×10−4 cm−1, B =55.5×10−4 cm−1. The hyperfine parameters show that the hybridization of the ligand orbitals is very sensitive to the symmetry around the ligand. The g values and Cu hyperfine parameters are not much affected by the distortions occurring in the ligand. The energies of the d-d transitions are determined by optical absorption measurements on Cu diethyldithiophosphate in solution. Using the spin Hamiltonian parameters together with optical absorption results, the MO parameters for the complex are calculated. It is found that in addition to the bond, the bonds are also strongly covalent. ©1973 The American Institute of Physics
Resumo:
Digital image
Resumo:
Preparation and structural characterization of palladium (II) complexes of ligands III-V and copper (II) complexes of III are reported. The elemental analyses of the complexes show that the metal: ligand ratio is 1 : 2. The electrical conductance in acetone shows the non-electrolytic nature of the complexes. The diamagnetic character suggests a gross square-planar geometry for the palladium (II) complexes. Copper (II) complexes are paramagnetic with/~eff.~l'90 B.M. Spectral data suggest that in all the complexes the ligand coordinates to the metal (II) symmetrically through isonitroso-nitrogen and imine-nitrogen, forming a ¡ membered chelate ring. Amine-exchange reactions of the complexes are discussed and compared on the basis of their structures.
Resumo:
Single crystal electron spin resonance studies of Cu2+ doped ferroelectric ammonium sulphate ((NH4)2SO4, Tc = 223 K) are reported at 300 and 77 K. The Cu2+ ion is found to enter the lattice interstitially with a trigonal bipyramidal coordination. Proton superhyperfine interaction is found for magnetic field directions close to the a-axis. Changes are observed in the 77 K recordings indicating a distortion of the trigonal bipyramid consistent with crystal structure data. An increase of the proton superhyperfine constant in the ferroelectric phase is indicative of stronger hydrogen bonding. The Cu2+ ion doped as an impurity in a trigonal bipyramid environment in a diamagnetic host lattice is reported for the first time.
Resumo:
Isonicotinic acid hydrazide (isoniazid), one of the most potent antitubercular drugs, was recently shown, in our laboratory, to form two different complexes with copper, depending upon the oxidation state of the metal ion. Both the complexes have been shown to possess antiviral activity against Rous sarcoma virus, an RNA tumor virus. The antiviral activity of the complexes has been attributed to their ability to inhibit the endogenous reverse transcriptase activity of RSV. More recent studies in our laboratory indicate that both these complexes inhibit both endogenous and exogenous reactions. As low a final concentration as 50 μM of the cupric and the cuprous complexes inhibits the endogenous reaction to the extent of 93 and 75 per cent respectively. Inhibition of the exogenous reaction varies with the templates. The inhibition can be reversed by either β-mercaptoethanol or ethylene-diamine-tetra-acetic acid. The specificity of this inhibition has been ascertained by using a synthetic primer-template, −(dG)not, vert, similar15−(rCm)n, which is highly specific for reverse transcriptases. The inhibition is found to be template specific. The studies carried out, using various synthetic primer-templates, show the inhibition of both the steps of reverse transcription by the copper complexes of isoniazid.
Resumo:
A study of the hyperfine interaction in the ESR of Cu-Cu pairs in single crystals of copper diethyldithiocarbamate as a function of temperature has shown distinct differences in the hyperfine structure in the two fine structure transitions at 20 K, the spectrum not having the same hyperfine intensity pattern in the low field fine structure transition in contrast to that of the high field transition. The details of the structure of both the fine structure transitions in the 20 K spectrum have now been explained by recognizing the fact that the mixing of the nuclear spin states caused by the anisotropic hyperfine interaction affects the electron spin states | + 1 > and | −> differently. This has incidentally led to a determination of the sign ofD confirming the earlier model. The anomalous hyperfine structure is found to become symmetric at 77 K and 300 K. It is proposed that the reason for this lies in the dynamics of spin-lattice interaction which limits the lifetime of the spin states in each of the electronic levels | − 1 >, | 0 > and | + 1 > The estimate of spin-lattice relaxation time agrees with those indicated from other studies. The model proposed here for the hyperfine interaction of pairs in the electronic triplet state is of general validity.
Resumo:
Finely control of product selectivity is an essential issue in organic chemical production. In the synthesis of functionalized anilines via reduction of the corresponding nitroarenes, the challenge is to selectively reduce only the nitro group in the presence of other reducible functional groups in nitroarene molecules at a high reaction rate. Normally, the nitroarene is reduced stepwise through a series of intermediates that remain as byproducts, increasing the aniline synthesis cost. Here we report that alloying small amounts of copper into gold nanoparticles can alter the reaction pathway of the catalytic reduction under visible-light irradiation at ambient temperature, allowing nitroaromatics to be transformed directly to anilines in a highly selective manner. The reasons for the high efficiency of the photocatalytic reduction under these comparatively benign conditions as well as the light-excited reaction mechanisms are discussed. This photocatalytic process avoids byproducts, exhibits a high reaction rate and excellent substituent tolerance, and can be used for the synthesis of many useful functionalized anilines under environmentally benign conditions. Switching of the reaction pathway simply by tailoring the bimetallic alloy NPs of the photocatalysts is effective for engineering of product chemoselectivity.