996 resultados para genome maintenance
Resumo:
The concept of constructability uses integration art of individual functions through a valuable and timely construction inputs into planning and design development stages. It results in significant savings in cost and time needed to finalize infrastructure projects. However, available constructability principles, developed by CII Australia (1993), do not cover Operation and Maintenance (O&M) phases of projects, whilst major cost and time in multifaceted infrastructure projects are spent in post-occupancy stages. This paper discusses the need to extend the constructability concept by examining current O&M issues in the provision of multifaceted building projects. It highlights available O&M problems and shortcomings of building projects, as well as their causes and reasons in different categories. This initial categorization is an efficient start point for testing probable present O&M issues in various cases of complex infrastructure building projects. This preliminary categorization serve as a benchmark to develop an extended constructability model that considers the whole project life cycle phases rather than a specific phase. It anticipates that the development of an extended constructability model can reduce significant number of reworks, mistakes, extra costs and time wasted during delivery stages of multifaceted building projects.
Resumo:
Estimating and predicting degradation processes of engineering assets is crucial for reducing the cost and insuring the productivity of enterprises. Assisted by modern condition monitoring (CM) technologies, most asset degradation processes can be revealed by various degradation indicators extracted from CM data. Maintenance strategies developed using these degradation indicators (i.e. condition-based maintenance) are more cost-effective, because unnecessary maintenance activities are avoided when an asset is still in a decent health state. A practical difficulty in condition-based maintenance (CBM) is that degradation indicators extracted from CM data can only partially reveal asset health states in most situations. Underestimating this uncertainty in relationships between degradation indicators and health states can cause excessive false alarms or failures without pre-alarms. The state space model provides an efficient approach to describe a degradation process using these indicators that can only partially reveal health states. However, existing state space models that describe asset degradation processes largely depend on assumptions such as, discrete time, discrete state, linearity, and Gaussianity. The discrete time assumption requires that failures and inspections only happen at fixed intervals. The discrete state assumption entails discretising continuous degradation indicators, which requires expert knowledge and often introduces additional errors. The linear and Gaussian assumptions are not consistent with nonlinear and irreversible degradation processes in most engineering assets. This research proposes a Gamma-based state space model that does not have discrete time, discrete state, linear and Gaussian assumptions to model partially observable degradation processes. Monte Carlo-based algorithms are developed to estimate model parameters and asset remaining useful lives. In addition, this research also develops a continuous state partially observable semi-Markov decision process (POSMDP) to model a degradation process that follows the Gamma-based state space model and is under various maintenance strategies. Optimal maintenance strategies are obtained by solving the POSMDP. Simulation studies through the MATLAB are performed; case studies using the data from an accelerated life test of a gearbox and a liquefied natural gas industry are also conducted. The results show that the proposed Monte Carlo-based EM algorithm can estimate model parameters accurately. The results also show that the proposed Gamma-based state space model have better fitness result than linear and Gaussian state space models when used to process monotonically increasing degradation data in the accelerated life test of a gear box. Furthermore, both simulation studies and case studies show that the prediction algorithm based on the Gamma-based state space model can identify the mean value and confidence interval of asset remaining useful lives accurately. In addition, the simulation study shows that the proposed maintenance strategy optimisation method based on the POSMDP is more flexible than that assumes a predetermined strategy structure and uses the renewal theory. Moreover, the simulation study also shows that the proposed maintenance optimisation method can obtain more cost-effective strategies than a recently published maintenance strategy optimisation method by optimising the next maintenance activity and the waiting time till the next maintenance activity simultaneously.
Resumo:
Distributed pipeline assets systems are crucial to society. The deterioration of these assets and the optimal allocation of limited budget for their maintenance correspond to crucial challenges for water utility managers. Decision makers should be assisted with optimal solutions to select the best maintenance plan concerning available resources and management strategies. Much research effort has been dedicated to the development of optimal strategies for maintenance of water pipes. Most of the maintenance strategies are intended for scheduling individual water pipe. Consideration of optimal group scheduling replacement jobs for groups of pipes or other linear assets has so far not received much attention in literature. It is a common practice that replacement planners select two or three pipes manually with ambiguous criteria to group into one replacement job. This is obviously not the best solution for job grouping and may not be cost effective, especially when total cost can be up to multiple million dollars. In this paper, an optimal group scheduling scheme with three decision criteria for distributed pipeline assets maintenance decision is proposed. A Maintenance Grouping Optimization (MGO) model with multiple criteria is developed. An immediate challenge of such modeling is to deal with scalability of vast combinatorial solution space. To address this issue, a modified genetic algorithm is developed together with a Judgment Matrix. This Judgment Matrix is corresponding to various combinations of pipe replacement schedules. An industrial case study based on a section of a real water distribution network was conducted to test the new model. The results of the case study show that new schedule generated a significant cost reduction compared with the schedule without grouping pipes.
Resumo:
Due to the limitation of current condition monitoring technologies, the estimates of asset health states may contain some uncertainties. A maintenance strategy ignoring this uncertainty of asset health state can cause additional costs or downtime. The partially observable Markov decision process (POMDP) is a commonly used approach to derive optimal maintenance strategies when asset health inspections are imperfect. However, existing applications of the POMDP to maintenance decision-making largely adopt the discrete time and state assumptions. The discrete-time assumption requires the health state transitions and maintenance activities only happen at discrete epochs, which cannot model the failure time accurately and is not cost-effective. The discrete health state assumption, on the other hand, may not be elaborate enough to improve the effectiveness of maintenance. To address these limitations, this paper proposes a continuous state partially observable semi-Markov decision process (POSMDP). An algorithm that combines the Monte Carlo-based density projection method and the policy iteration is developed to solve the POSMDP. Different types of maintenance activities (i.e., inspections, replacement, and imperfect maintenance) are considered in this paper. The next maintenance action and the corresponding waiting durations are optimized jointly to minimize the long-run expected cost per unit time and availability. The result of simulation studies shows that the proposed maintenance optimization approach is more cost-effective than maintenance strategies derived by another two approximate methods, when regular inspection intervals are adopted. The simulation study also shows that the maintenance cost can be further reduced by developing maintenance strategies with state-dependent maintenance intervals using the POSMDP. In addition, during the simulation studies the proposed POSMDP shows the ability to adopt a cost-effective strategy structure when multiple types of maintenance activities are involved.
Resumo:
Engineering asset management (EAM) is a broad discipline and the EAM functions and processes are characterized by its distributed nature. However, engineering asset nowadays mostly relies on self-maintained experiential rule bases and periodic maintenance, which is lacking a collaborative engineering approach. This research proposes a collaborative environment integrated by a service center with domain expertise such as diagnosis, prognosis, and asset operations. The collaborative maintenance chain combines asset operation sites, service center (i.e., maintenance operation coordinator), system provider, first tier collaborators, and maintenance part suppliers. Meanwhile, to realize the automation of communication and negotiation among organizations, multiagent system (MAS) technique is applied to enhance the entire service level. During the MAS design processes, this research combines Prometheus MAS modeling approach with Petri-net modeling methodology and unified modeling language to visualize and rationalize the design processes of MAS. The major contributions of this research include developing a Petri-net enabled Prometheus MAS modeling methodology and constructing a collaborative agent-based maintenance chain framework for integrated EAM.
Resumo:
The proportion of functional sequence in the human genome is currently a subject of debate. The most widely accepted figure is that approximately 5% is under purifying selection. In Drosophila, estimates are an order of magnitude higher, though this corresponds to a similar quantity of sequence. These estimates depend on the difference between the distribution of genomewide evolutionary rates and that observed in a subset of sequences presumed to be neutrally evolving. Motivated by the widening gap between these estimates and experimental evidence of genome function, especially in mammals, we developed a sensitive technique for evaluating such distributions and found that they are much more complex than previously apparent. We found strong evidence for at least nine well-resolved evolutionary rate classes in an alignment of four Drosophila species and at least seven classes in an alignment of four mammals, including human. We also identified at least three rate classes in human ancestral repeats. By positing that the largest of these ancestral repeat classes is neutrally evolving, we estimate that the proportion of nonneutrally evolving sequence is 30% of human ancestral repeats and 45% of the aligned portion of the genome. However, we also question whether any of the classes represent neutrally evolving sequences and argue that a plausible alternative is that they reflect variable structure-function constraints operating throughout the genomes of complex organisms.
Resumo:
Growing evidence suggests that a novel member of the Chlamydiales order, Waddlia chondrophila, is a potential agent of miscarriage in humans and abortion in ruminants. Due to the lack of genetic tools to manipulate chlamydia, genomic analysis is proving to be the most incisive tool in stimulating investigations into the biology of these obligate intracellular bacteria. 454/Roche and Solexa/Illumina technologies were thus used to sequence and assemble de novo the full genome of the first representative of the Waddliaceae family, W. chondrophila. The bacteria possesses a 2′116′312bp chromosome and a 15′593 bp low-copy number plasmid that might integrate into the bacterial chromosome. The Waddlia genome displays numerous repeated sequences indicating different genome dynamics from classical chlamydia which almost completely lack repetitive elements. Moreover, W. chondrophila exhibits many virulence factors also present in classical chlamydia, including a functional type III secretion system, but also a large complement of specific factors for resistance to host or environmental stresses. Large families of outer membrane proteins were identified indicating that these highly immunogenic proteins are not Chlamydiaceae specific and might have been present in their last common ancestor. Enhanced metabolic capability for the synthesis of nucleotides, amino acids, lipids and other co-factors suggests that the common ancestor of the modern Chlamydiales may have been less dependent on their eukaryotic host. The fine-detailed analysis of biosynthetic pathways brings us closer to possibly developing a synthetic medium to grow W. chondrophila, a critical step in the development of genetic tools. As a whole, the availability of the W. chondrophila genome opens new possibilities in Chlamydiales research, providing new insights into the evolution of members of the order Chlamydiales and the biology of the Waddliaceae.
Resumo:
Background By 2025, it is estimated that approximately 1.8 million Australian adults (approximately 8.4% of the adult population) will have diabetes, with the majority having type 2 diabetes. Weight management via improved physical activity and diet is the cornerstone of type 2 diabetes management. However, the majority of weight loss trials in diabetes have evaluated short-term, intensive clinic-based interventions that, while producing short-term outcomes, have failed to address issues of maintenance and broad population reach. Telephone-delivered interventions have the potential to address these gaps. Methods/Design Using a two-arm randomised controlled design, this study will evaluate an 18-month, telephone-delivered, behavioural weight loss intervention focussing on physical activity, diet and behavioural therapy, versus usual care, with follow-up at 24 months. Three-hundred adult participants, aged 20-75 years, with type 2 diabetes, will be recruited from 10 general practices via electronic medical records search. The Social-Cognitive Theory driven intervention involves a six-month intensive phase (4 weekly calls and 11 fortnightly calls) and a 12-month maintenance phase (one call per month). Primary outcomes, assessed at 6, 18 and 24 months, are: weight loss, physical activity, and glycaemic control (HbA1c), with weight loss and physical activity also measured at 12 months. Incremental cost-effectiveness will also be examined. Study recruitment began in February 2009, with final data collection expected by February 2013. Discussion This is the first study to evaluate the telephone as the primary method of delivering a behavioural weight loss intervention in type 2 diabetes. The evaluation of maintenance outcomes (6 months following the end of intervention), the use of accelerometers to objectively measure physical activity, and the inclusion of a cost-effectiveness analysis will advance the science of broad reach approaches to weight control and health behaviour change, and will build the evidence base needed to advocate for the translation of this work into population health practice.
Resumo:
Infectious cDNA clones of RNA viruses are important research tools, but flavivirus cDNA clones have proven difficult to assemble and propagate in bacteria. This has been attributed to genetic instability and/or host cell toxicity, however the mechanism leading to these difficulties has not been fully elucidated. Here we identify and characterize an efficient cryptic bacterial promoter in the cDNA encoding the dengue virus (DENV) 5′ UTR. Following cryptic transcription in E. coli, protein expression initiated at a conserved in-frame AUG that is downstream from the authentic DENV initiation codon, yielding a DENV polyprotein fragment that was truncated at the N-terminus. A more complete understanding of constitutive viral protein expression in E. coli might help explain the cloning and propagation difficulties generally observed with flavivirus cDNA.
Resumo:
This paper presents a group maintenance scheduling case study for a water distributed network. This water pipeline network presents the challenge of maintaining aging pipelines with the associated increases in annual maintenance costs. The case study focuses on developing an effective maintenance plan for the water utility. Current replacement planning is difficult as it needs to balance the replacement needs under limited budgets. A Maintenance Grouping Optimization (MGO) model based on a modified genetic algorithm was utilized to develop an optimum group maintenance schedule over a 20-year cycle. The adjacent geographical distribution of pipelines was used as a grouping criterion to control the searching space of the MGO model through a Judgment Matrix. Based on the optimum group maintenance schedule, the total cost was effectively reduced compared with the schedules without grouping maintenance jobs. This optimum result can be used as a guidance to optimize the current maintenance plan for the water utility.
Resumo:
Using a genome-scanning approach to search for oncogenes, a recent report identifies somatic mutations in the signaling gene BRAF that are particularly prevalent in melanoma.