995 resultados para genetic variant
Resumo:
Protein engineering aims to improve the properties of enzymes and affinity reagents by genetic changes. Typical engineered properties are affinity, specificity, stability, expression, and solubility. Because proteins are complex biomolecules, the effects of specific genetic changes are seldom predictable. Consequently, a popular strategy in protein engineering is to create a library of genetic variants of the target molecule, and render the population in a selection process to sort the variants by the desired property. This technique, called directed evolution, is a central tool for trimming protein-based products used in a wide range of applications from laundry detergents to anti-cancer drugs. New methods are continuously needed to generate larger gene repertoires and compatible selection platforms to shorten the development timeline for new biochemicals. In the first study of this thesis, primer extension mutagenesis was revisited to establish higher quality gene variant libraries in Escherichia coli cells. In the second study, recombination was explored as a method to expand the number of screenable enzyme variants. A selection platform was developed to improve antigen binding fragment (Fab) display on filamentous phages in the third article and, in the fourth study, novel design concepts were tested by two differentially randomized recombinant antibody libraries. Finally, in the last study, the performance of the same antibody repertoire was compared in phage display selections as a genetic fusion to different phage capsid proteins and in different antibody formats, Fab vs. single chain variable fragment (ScFv), in order to find out the most suitable display platform for the library at hand. As a result of the studies, a novel gene library construction method, termed selective rolling circle amplification (sRCA), was developed. The method increases mutagenesis frequency close to 100% in the final library and the number of transformants over 100-fold compared to traditional primer extension mutagenesis. In the second study, Cre/loxP recombination was found to be an appropriate tool to resolve the DNA concatemer resulting from error-prone RCA (epRCA) mutagenesis into monomeric circular DNA units for higher efficiency transformation into E. coli. Library selections against antigens of various size in the fourth study demonstrated that diversity placed closer to the antigen binding site of antibodies supports generation of antibodies against haptens and peptides, whereas diversity at more peripheral locations is better suited for targeting proteins. The conclusion from a comparison of the display formats was that truncated capsid protein three (p3Δ) of filamentous phage was superior to the full-length p3 and protein nine (p9) in obtaining a high number of uniquely specific clones. Especially for digoxigenin, a difficult hapten target, the antibody repertoire as ScFv-p3Δ provided the clones with the highest affinity for binding. This thesis on the construction, design, and selection of gene variant libraries contributes to the practical know-how in directed evolution and contains useful information for scientists in the field to support their undertakings.
Resumo:
Genetic and environmental factors have been implicated in the development of Alzheimer's disease (AD), the most common form of dementia in the elderly. Mutations in 3 genes mapped on chromosomes 21, 14 and 1 are related to the rare early onset forms of AD while the e4 allele of the apolipoprotein E (APOE) gene (on chromosome 19) is the major susceptibility locus for the most common late onset AD (LOAD). Serotonin (5-hydroxytryptamine or 5-HT) is a key neurotransmitter implicated in the control of mood, sleep, appetite and a variety of traits and behaviors. Recently, a polymorphism in the transcriptional control region upstream of the 5-HT transporter (5-HTT) gene has been studied in several psychiatric diseases and personality traits. It has been demonstrated that the short variant(s) of this 5-HTT gene-linked polymorphic region (5-HTTLPR) is associated with a different transcriptional efficiency of the 5-HTT gene promoter resulting in decreased 5-HTT expression and 5-HT uptake in lymphocytes. An increased frequency of this 5-HTTLPR short variant polymorphism in LOAD was recently reported. In addition, another common polymorphic variation in the 5-HT2A and 5-HT2C serotonin receptor genes previously analyzed in schizophrenic patients was associated with auditory and visual hallucinations in AD. These observations suggest that the involvement of the serotonin pathway might provide an explanation for some aspects of the affective symptoms commonly observed in AD patients. In summary, research on genetic polymorphisms related to AD and involved in receptors, transporter proteins and the enzymatic machinery of serotonin might enhance our understanding of this devastating neurodegenerative disorder.
Resumo:
The contribution of genetic factors to the development of obesity has been widely recognized, but the identity of the genes involved has not yet been fully clarified. Variation in genes involved in adipocyte differentiation and energy metabolism is expected to have a role in the etiology of obesity. We assessed the potential association of a polymorphism in one candidate gene, peroxisome proliferator-activated receptor-gamma (PPARGg), involved in these pathways and obesity-related phenotypes in 335 Brazilians of European descent. All individuals included in the sample were adults. Pregnant women, as well as those individuals with secondary hyperlipidemia due to renal, liver or thyroid disease, and diabetes, were not invited to participate in the study; all other individuals were included. The gene variant PPARG Pro12Ala was studied by a PCR-based method and the association between this genetic polymorphism and obesity-related phenotypes was evaluated by analysis of covariance. Variant allele frequency was PPARG Ala12 = 0.09 which is in the same range as described for European and European-derived populations. No statistically significant differences were observed for mean total cholesterol, LDL cholesterol, HDL cholesterol, or triglyceride levels among PPARG genotypes in either gender. In the male sample, an association between the PPARG Pro12Ala variant and body mass index was detected, with male carriers of the Ala variant presenting a higher mean body mass index than wild-type homozygotes (28.3 vs 26.2 kg/m², P = 0.037). No effect of this polymorphism was detected in women. This finding suggests that the PPARG gene has a gender-specific effect and contributes to the susceptibility to obesity in this population.
Resumo:
Systemic lupus erythematosus (SLE), a complex polygenic autoimmune disease, is associated with increased complement activation. Variants of genes encoding complement regulator factor H (CFH) and five CFH-related proteins (CFHR1-CFHR5) within the chromosome 1q32 locus linked to SLE, have been associated with multiple human diseases and may contribute to dysregulated complement activation predisposing to SLE. We assessed 60 SNPs covering the CFH-CFHRs region for association with SLE in 15,864 case-control subjects derived from four ethnic groups. Significant allelic associations with SLE were detected in European Americans (EA) and African Americans (AA), which could be attributed to an intronic CFH SNP (rs6677604, in intron 11, Pmeta = 6.6×10-8, OR = 1.18) and an intergenic SNP between CFHR1 and CFHR4 (rs16840639, Pmeta = 2.9×10-7, OR = 1.17) rather than to previously identified disease-associated CFH exonic SNPs, including I62V, Y402H, A474A, and D936E. In addition, allelic association of rs6677604 with SLE was subsequently confirmed in Asians (AS). Haplotype analysis revealed that the underlying causal variant, tagged by rs6677604 and rs16840639, was localized to a ~146 kb block extending from intron 9 of CFH to downstream of CFHR1. Within this block, the deletion of CFHR3 and CFHR1 (CFHR3-1Δ), a likely causal variant measured using multiplex ligation-dependent probe amplification, was tagged by rs6677604 in EA and AS and rs16840639 in AA, respectively. Deduced from genotypic associations of tag SNPs in EA, AA, and AS, homozygous deletion of CFHR3-1Δ (Pmeta = 3.2×10-7, OR = 1.47) conferred a higher risk of SLE than heterozygous deletion (Pmeta = 3.5×10-4, OR = 1.14). These results suggested that the CFHR3-1Δ deletion within the SLE-associated block, but not the previously described exonic SNPs of CFH, might contribute to the development of SLE in EA, AA, and AS, providing new insights into the role of complement regulators in the pathogenesis of SLE.
Resumo:
BACKGROUND: Intronic variation in the FTO (fat mass and obesity-associated) gene has been unequivocally associated with increased body mass index (BMI; in kg/m(2)) and the risk of obesity in populations of different ethnicity. OBJECTIVE: We examined whether this robust genetic predisposition to obesity can be attenuated by being more physically active. DESIGN: The FTO variant rs1121980 was genotyped in 20,374 participants (39-79 y of age) from the European Prospective Investigation into Cancer and Nutrition-Norfolk Study, an ethnically homogeneous population-based cohort. Physical activity (PA) was assessed with a validated self-reported questionnaire. The interaction between rs1121980 and PA on BMI and waist circumference (WC) was examined by including the interaction term in mixed-effect models. RESULTS: We confirmed that the risk (T) allele of rs1121980 was significantly associated with BMI (0.31-unit increase per allele; P < 0.001) and WC (0.77-cm increase per allele; P < 0.001). The PA level attenuated the effect of rs1121980 on BMI and WC; ie, whereas in active individuals the risk allele increased BMI by 0.25 per allele, the increase in BMI was significantly (P for interaction = 0.004) more pronounced (76%) in inactive individuals (0.44 per risk allele). We observed similar effects for WC (P for interaction = 0.02): the risk allele increased WC by 1.04 cm per allele in inactive individuals but by only 0.64 cm in active individuals. CONCLUSIONS: Our results showed that PA attenuates the effect of the FTO rs1121980 genotype on BMI and WC. This observation has important public health implications because we showed that a genetic susceptibility to obesity induced by FTO variation can be overcome, at least in part, by adopting a physically active lifestyle.
Resumo:
Background Autism Spectrum Conditions (ASC) are a group of neurodevelopmental conditions characterized by impairments in communication and social interaction, alongside unusually repetitive behaviors and narrow interests. ASC are highly heritable and have complex patterns of inheritance where multiple genes are involved, alongside environmental and epigenetic factors. Asperger Syndrome (AS) is a subgroup of these conditions, where there is no history of language or cognitive delay. Animal models suggest a role for oxytocin (OXT) and oxytocin receptor (OXTR) genes in social-emotional behaviors, and several studies indicate that the oxytocin/oxytocin receptor system is altered in individuals with ASC. Previous studies have reported associations between genetic variations in the OXTR gene and ASC. Methods The present study tested for an association between nine single nucleotide polymorphisms (SNPs) in the OXTR gene and AS in 530 individuals of Caucasian origin, using SNP association test and haplotype analysis. Results There was a significant association between rs2268493 in OXTR and AS. Multiple haplotypes that include this SNP (rs2268493-rs2254298, rs2268490-rs2268493-rs2254298, rs2268493-rs2254298-rs53576, rs237885-rs2268490-rs2268493-rs2254298, rs2268490-rs2268493-rs2254298-rs53576) were also associated with AS. rs2268493 has been previously associated with ASC and putatively alters several transcription factor-binding sites and regulates chromatin states, either directly or through other variants in linkage disequilibrium (LD). Conclusions This study reports a significant association of the sequence variant rs2268493 in the OXTR gene and associated haplotypes with AS.
Resumo:
Significant interindividual variations in health outcome may be caused by the inheritance of variant polymorphic genes, such as CYP2D6 and CYP2E1 for activation, and GSTM1 and GSTT1 for detoxification of chemicals. However. mechanistic studies linking the inheritance of predisposing genes with genotoxic effects towards cancer have yet to be systematically conducted. We have studied 54 lung cancer patients and 50 matched normal controls, who have been cigarette smokers, to elucidate the role of polymorphic genes in cancer. Our data indicates that the inheritance of unfavorable CYP2D6, CYP2E1, and GSTT1 genes is strongly correlated with the smoking-related lung cancer. For heavy cigarette smokers (> 30 pack-years), the smoking habit is the strongest predictor of lung cancer risk irrespective of the inheritance of unfavorable metabolizing genes. For moderate to light smokers (< 30 pack-years), the genetic predisposition plays on important role For the risk (odds ratio = 3.46; 95% CL = 0.46-40.2). Using a subgroup of the study population, we observed that cigarette smokers having the defective GST genes have significantly more chromosome aberrations as determined by the fluorescence-in-situ-hybridization (FISH) technique than smokers with the normal GST genes (P < 0.001). In conclusion, our study provides data to indicate that individuals who have inherited unfavorable metabolizing genes have increased body burden of toxicants to cause increased genetic damage and to have increased risk for cancer. Studies like ours can be used to understand the basis for interindividual variations in cancer outcome, to identify high risk individuals and to assess health risk. (C) 1997 Wiley Liss, Inc.
Resumo:
Background: Atherosclerotic coronary artery disease (CAD) is a multifactorial process that appears to be caused by the interaction of environmental risk factors with multiple predisposing genes. It is nowadays accepted that increased levels of DNA damage induced by xenobiotics play an important role in the early phases of atherogenesis. Therefore, in this study, we focus on determining whether genetic variations in xenobiotic-metabolizing [glutathione-S-transferase theta 1 (GSTT1), glutathione-S-transferase mu 1 (GSTM1), cytochrome P450 IIEI (CYP2E1)] and DNA repair [X-ray cross-complementing group 1 (XRCC1)] genes might be associated with increased risk for CAD. Methods: A case-control study was conducted with 400 individuals who underwent subjected to coronary angiography. A total of 299 were patients diagnosed with effective coronary atherosclerosis (case group; >20% obstructive lesion), and 101 (control group) were individuals diagnosed as negative for CAD (<20% obstructive lesions). The polymorphism identifications for GSTM1 and GSTT1, and for CYP2E1 and XRCC1 genes were performed by polymerase chain reaction (PCR) amplification and by PCR-RFLP, respectively. Results and conclusions: The XRCC1 homozygous wild-type genotype Arg/Arg for codon 399 was statistically less pronounced in the case subjects (21.4%) than in controls (38.5%); individuals with the variant XRCC1 genotype had a 2.3-fold increased risk for coronary atherosclerosis than individuals with the wild-type genotype (OR=2.3, 95% CI=1.13-4.69). Conversely, no association between GSTM1, GSTT1, and CYP2E1gene polymorphisms and coronary atherosclerosis was detected. The results provide evidence of the role of DNA damage and repair in cardiovascular disease. © 2011 Elsevier Inc. All rights reserved.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
In west-central Texas, USA, abatement efforts for the gray fox (Urocyon cinereoargenteus) rabies epizootic illustrate the difficulties inherent in large-scale management of wildlife disease. The rabies epizootic has been managed through a cooperative oral rabies vaccination program (ORV) since 1996. Millions of edible baits containing a rabies vaccine have been distributed annually in a 16-km to 24-km zone around the perimeter of the epizootic, which encompasses a geographic area >4 x 105 km2. The ORV program successfully halted expansion of the epizootic into metropolitan areas but has not achieved the ultimate goal of eradication. Rabies activity in gray fox continues to occur periodically outside the ORV zone, preventing ORV zone contraction and dissipation of the epizootic. We employed a landscape-genetic approach to assess gray fox population structure and dispersal in the affected area, with the aim of assisting rabies management efforts. No unique genetic clusters or population boundaries were detected. Instead, foxes were weakly structured over the entire region in an isolation by distance pattern. Local subpopulations appeared to be genetically non-independent over distances >30 km, implying that long-distance movements or dispersal may have been common in the region. We concluded that gray foxes in west-central Texas have a high potential for long-distance rabies virus trafficking. Thus, a 16-km to 24-km ORV zone may be too narrow to contain the fox rabies epizootic. Continued expansion of the ORV zone, although costly, may be critical to the long-term goal of eliminating the Texas fox rabies virus variant from the United States.
Resumo:
Since around 1723, on the occasion of its initial colonization by Europeans, Rondonia has received successive waves of immigrants. This has been further swelled by individuals from northeastern Brazil, who began entering at the beginning of the twentieth century. The ethnic composition varies across the state according to the various sites of settlement of each wave of immigrants. We analyzed the frequency of the CCR5 Delta 32 allele of the CCR5 chemokine receptor, which is considered a Caucasian marker, in five sample sets from the population. Four were collected in Porto Velho, the state capital and the site of several waves of migration. Of these, two, from the Hospital de Base were comprised of HB Mothers and HB Newborns presenting allele frequencies of 3.5% and 3.1%, respectively, a third from the peri-urban neighborhoods of Candelaria/Bate-Estaca (1.8%), whereas a fourth, from the Research Center on Tropical Medicine/CEPEM (0.6%), was composed of malaria patients under treament. The fifth sample (3.4%) came from the inland Quilombola village of Pedras Negras. Two homozygous individuals (CCR5 Delta 32/CCR5 Delta 32) were detected among the HB Mother samples. The frequency of this allele was heterogeneous and higher where the European inflow was more pronounced. The presence of the allele in Pedras Negras revealed European miscegenation in a community largely comprising Quilombolas.
Resumo:
Genome-wide association studies have failed to establish common variant risk for the majority of common human diseases. The underlying reasons for this failure are explained by recent studies of resequencing and comparison of over 1200 human genomes and 10 000 exomes, together with the delineation of DNA methylation patterns (epigenome) and full characterization of coding and noncoding RNAs (transcriptome) being transcribed. These studies have provided the most comprehensive catalogues of functional elements and genetic variants that are now available for global integrative analysis and experimental validation in prospective cohort studies. With these datasets, researchers will have unparalleled opportunities for the alignment, mining, and testing of hypotheses for the roles of specific genetic variants, including copy number variations, single nucleotide polymorphisms, and indels as the cause of specific phenotypes and diseases. Through the use of next-generation sequencing technologies for genotyping and standardized ontological annotation to systematically analyze the effects of genomic variation on humans and model organism phenotypes, we will be able to find candidate genes and new clues for disease’s etiology and treatment. This article describes essential concepts in genetics and genomic technologies as well as the emerging computational framework to comprehensively search websites and platforms available for the analysis and interpretation of genomic data.
Resumo:
The Ph chromosome is the most frequent cytogenetic aberration associated with adult ALL and it represents the single most significant adverse prognostic marker. Despite imatinib has led to significant improvements in the treatment of patients with Ph+ ALL, in the majority of cases resistance developed quickly and disease progressed. Some mechanisms of resistance have been widely described but the full knowledge of contributing factors, driving both the disease and resistance, remains to be defined. The observation of rapid development of lymphoblastic leukemia in mice expressing altered Ikaros (Ik) isoforms represented the background of this study. Ikaros is a zinc finger transcription factor required for normal hemopoietic differentiation and proliferation, particularly in the lymphoid lineages. By means of alternative splicing, Ikaros encodes several proteins that differ in their abilities to bind to a consensus DNA-binding site. Shorter, DNA nonbinding isoforms exert a dominant negative effect, inhibiting the ability of longer heterodimer partners to bind DNA. The differential expression pattern of Ik isoforms in Ph+ ALL patients was analyzed in order to determine if molecular abnormalities involving the Ik gene could associate with resistance to imatinib and dasatinib. Bone marrow and peripheral blood samples from 46 adult patients (median age 55 yrs, 18-76) with Ph+ ALL at diagnosis and during treatment with imatinib (16 pts) or dasatinib (30 pts) were collected. We set up a fast, high-throughput method based on capillary electrophoresis technology to detect and quantify splice variants. 41% Ph+ ALL patients expressed high levels of the non DNA-binding dominant negative Ik6 isoform lacking critical N-terminal zinc-fingers which display abnormal subcellular compartmentalization pattern. Nuclear extracts from patients expressed Ik6 failed to bind DNA in mobility shift assay using a DNA probe containing an Ikaros-specific DNA binding sequence. In 59% Ph+ ALL patients there was the coexistence in the same PCR sample and at the same time of many splice variants corresponded to Ik1, Ik2, Ik4, Ik4A, Ik5A, Ik6, Ik6 and Ik8 isoforms. In these patients aberrant full-length Ikaros isoforms in Ph+ ALL characterized by a 60-bp insertion immediately downstream of exon 3 and a recurring 30-bp in-frame deletion at the end of exon 7 involving most frequently the Ik2, Ik4 isoforms were also identified. Both the insertion and deletion were due to the selection of alternative splice donor and acceptor sites. The molecular monitoring of minimal residual disease showed for the first time in vivo that the Ik6 expression strongly correlated with the BCR-ABL transcript levels suggesting that this alteration could depend on the Bcr-Abl activity. Patient-derived leukaemia cells expressed dominant-negative Ik6 at diagnosis and at the time of relapse, but never during remission. In order to mechanistically demonstrated whether in vitro the overexpression of Ik6 impairs the response to tyrosine kinase inhibitors (TKIs) and contributes to resistance, an imatinib-sensitive Ik6-negative Ph+ ALL cell line (SUP-B15) was transfected with the complete Ik6 DNA coding sequence. The expression of Ik6 strongly increased proliferation and inhibited apoptosis in TKI sensitive cells establishing a previously unknown link between specific molecular defects that involve the Ikaros gene and the resistance to TKIs in Ph+ ALL patients. Amplification and genomic sequence analysis of the exon splice junction regions showed the presence of 2 single nucleotide polymorphisms (SNPs): rs10251980 [A/G] in the exon2/3 splice junction and of rs10262731 [A/G] in the exon 7/8 splice junction in 50% and 36% of patients, respectively. A variant of the rs11329346 [-/C], in 16% of patients was also found. Other two different single nucleotide substitutions not recognized as SNP were observed. Some mutations were predicted by computational analyses (RESCUE approach) to alter cis-splicing elements. In conclusion, these findings demonstrated that the post-transcriptional regulation of alternative splicing of Ikaros gene is defective in the majority of Ph+ ALL patients treated with TKIs. The overexpression of Ik6 blocking B-cell differentiation could contribute to resistance opening a time frame, during which leukaemia cells acquire secondary transforming events that confer definitive resistance to imatinib and dasatinib.
Resumo:
Oncolytic virotherapy exploits the ability of viruses to infect and kill cells. It is suitable as treatment for tumors that are not accessible by surgery and/or respond poorly to the current therapeutic approach. HSV is a promising oncolytic agent. It has a large genome size able to accommodate large transgenes and some attenuated oncolytic HSVs (oHSV) are already in clinical trials phase I and II. The aim of this thesis was the generation of HSV-1 retargeted to tumor-specific receptors and detargeted from HSV natural receptors, HVEM and Nectin-1. The retargeting was achieved by inserting a specific single chain antibody (scFv) for the tumor receptor selected inside the HSV glycoprotein gD. In this research three tumor receptors were considered: epidermal growth factor receptor 2 (HER2) overexpressed in 25-30% of breast and ovarian cancers and gliomas, prostate specific membrane antigen (PSMA) expressed in prostate carcinomas and in neovascolature of solid tumors; and epidermal growth factor receptor variant III (EGFRvIII). In vivo studies on HER2 retargeted viruses R-LM113 and R-LM249 have demonstrated their high safety profile. For R-LM249 the antitumor efficacy has been highlighted by target-specific inhibition of the growth of human tumors in models of HER2-positive breast and ovarian cancer in nude mice. In a murine model of HER2-positive glioma in nude mice, R-LM113 was able to significantly increase the survival time of treated mice compared to control. Up to now, PSMA and EGFRvIII viruses (R-LM593 and R-LM613) are only characterized in vitro, confirming the specific retargeting to selected targets. This strategy has proved to be generally applicable to a broad spectrum of receptors for which a single chain antibody is available.