957 resultados para finite-sample test
Resumo:
Seven sites were drilled during Leg 67 along a transect across the Middle America Trench off Guatemala: four (Sites 494, 496, 497, and 498) on continental slope, two (Sites 499 and 500) on Trench floor, and one (Site 495) on the Cocos Plate. We studied the mineralogy of sediments from Sites 494, 495, 496, 499, and 500. Our objective was to investigate the origin and source of separate minerals and mineral assemblages, giving special attention to the influence of the alteration of basalts on the sediment mineralogy, which we expected to be particularly important in layers just above oceanic basement.
Resumo:
This dissertation contains four essays that all share a common purpose: developing new methodologies to exploit the potential of high-frequency data for the measurement, modeling and forecasting of financial assets volatility and correlations. The first two chapters provide useful tools for univariate applications while the last two chapters develop multivariate methodologies. In chapter 1, we introduce a new class of univariate volatility models named FloGARCH models. FloGARCH models provide a parsimonious joint model for low frequency returns and realized measures, and are sufficiently flexible to capture long memory as well as asymmetries related to leverage effects. We analyze the performances of the models in a realistic numerical study and on the basis of a data set composed of 65 equities. Using more than 10 years of high-frequency transactions, we document significant statistical gains related to the FloGARCH models in terms of in-sample fit, out-of-sample fit and forecasting accuracy compared to classical and Realized GARCH models. In chapter 2, using 12 years of high-frequency transactions for 55 U.S. stocks, we argue that combining low-frequency exogenous economic indicators with high-frequency financial data improves the ability of conditionally heteroskedastic models to forecast the volatility of returns, their full multi-step ahead conditional distribution and the multi-period Value-at-Risk. Using a refined version of the Realized LGARCH model allowing for time-varying intercept and implemented with realized kernels, we document that nominal corporate profits and term spreads have strong long-run predictive ability and generate accurate risk measures forecasts over long-horizon. The results are based on several loss functions and tests, including the Model Confidence Set. Chapter 3 is a joint work with David Veredas. We study the class of disentangled realized estimators for the integrated covariance matrix of Brownian semimartingales with finite activity jumps. These estimators separate correlations and volatilities. We analyze different combinations of quantile- and median-based realized volatilities, and four estimators of realized correlations with three synchronization schemes. Their finite sample properties are studied under four data generating processes, in presence, or not, of microstructure noise, and under synchronous and asynchronous trading. The main finding is that the pre-averaged version of disentangled estimators based on Gaussian ranks (for the correlations) and median deviations (for the volatilities) provide a precise, computationally efficient, and easy alternative to measure integrated covariances on the basis of noisy and asynchronous prices. Along these lines, a minimum variance portfolio application shows the superiority of this disentangled realized estimator in terms of numerous performance metrics. Chapter 4 is co-authored with Niels S. Hansen, Asger Lunde and Kasper V. Olesen, all affiliated with CREATES at Aarhus University. We propose to use the Realized Beta GARCH model to exploit the potential of high-frequency data in commodity markets. The model produces high quality forecasts of pairwise correlations between commodities which can be used to construct a composite covariance matrix. We evaluate the quality of this matrix in a portfolio context and compare it to models used in the industry. We demonstrate significant economic gains in a realistic setting including short selling constraints and transaction costs.
Resumo:
Les enjeux hydrologiques modernes, de prévisions ou liés aux changements climatiques, forcent l’exploration de nouvelles approches en modélisation afin de combler les lacunes actuelles et d’améliorer l’évaluation des incertitudes. L’approche abordée dans ce mémoire est celle du multimodèle (MM). L’innovation se trouve dans la construction du multimodèle présenté dans cette étude : plutôt que de caler individuellement des modèles et d’utiliser leur combinaison, un calage collectif est réalisé sur la moyenne des 12 modèles globaux conceptuels sélectionnés. Un des défis soulevés par cette approche novatrice est le grand nombre de paramètres (82) qui complexifie le calage et l’utilisation, en plus d’entraîner des problèmes potentiels d’équifinalité. La solution proposée dans ce mémoire est une analyse de sensibilité qui permettra de fixer les paramètres peu influents et d’ainsi réduire le nombre de paramètres total à caler. Une procédure d’optimisation avec calage et validation permet ensuite d’évaluer les performances du multimodèle et de sa version réduite en plus d’en améliorer la compréhension. L’analyse de sensibilité est réalisée avec la méthode de Morris, qui permet de présenter une version du MM à 51 paramètres (MM51) tout aussi performante que le MM original à 82 paramètres et présentant une diminution des problèmes potentiels d’équifinalité. Les résultats du calage et de la validation avec le « Split-Sample Test » (SST) du MM sont comparés avec les 12 modèles calés individuellement. Il ressort de cette analyse que les modèles individuels, composant le MM, présentent de moins bonnes performances que ceux calés indépendamment. Cette baisse de performances individuelles, nécessaire pour obtenir de bonnes performances globales du MM, s’accompagne d’une hausse de la diversité des sorties des modèles du MM. Cette dernière est particulièrement requise pour les applications hydrologiques nécessitant une évaluation des incertitudes. Tous ces résultats mènent à une amélioration de la compréhension du multimodèle et à son optimisation, ce qui facilite non seulement son calage, mais également son utilisation potentielle en contexte opérationnel.
Resumo:
International audience
Resumo:
Dissertação (mestrado)—Universidade de Brasília, Departamento de Botânica, Programa de Pós-Graduação em Botânica, 2016.
Resumo:
Dada la persistencia de las diferencias en ingresos laborales por regiones en Colombia, el presente artículo propone cuantificar la magnitud de este diferencial que es atribuida a la diferencia en estructuras de mercado laboral, entendiendo esta última como la diferencia en los retornos a las características de la fuerza laboral. Para ello se propone el uso de un método de descomposición del tipo Oaxaca- Blinder y se compara a Bogotá –la ciudad con mayores ingresos laborales- con otras ciudades principales. Los resultados obtenidos al conducir el ejercicio de descomposición muestran que las diferencias en estructura están a favor de Bogotá y que estas explican más de la mitad de la diferencia total, indicando que si se quieren reducir las disparidades de ingresos laborales entre ciudades no es suficiente con calificar la fuerza laboral y que es necesario indagar por las causas que hacen que los retornos a las características difieran entre ciudades.
Resumo:
This thesis provides a necessary and sufficient condition for asymptotic efficiency of a nonparametric estimator of the generalised autocovariance function of a Gaussian stationary random process. The generalised autocovariance function is the inverse Fourier transform of a power transformation of the spectral density, and encompasses the traditional and inverse autocovariance functions. Its nonparametric estimator is based on the inverse discrete Fourier transform of the same power transformation of the pooled periodogram. The general result is then applied to the class of Gaussian stationary ARMA processes and its implications are discussed. We illustrate that for a class of contrast functionals and spectral densities, the minimum contrast estimator of the spectral density satisfies a Yule-Walker system of equations in the generalised autocovariance estimator. Selection of the pooling parameter, which characterizes the nonparametric estimator of the generalised autocovariance, controlling its resolution, is addressed by using a multiplicative periodogram bootstrap to estimate the finite-sample distribution of the estimator. A multivariate extension of recently introduced spectral models for univariate time series is considered, and an algorithm for the coefficients of a power transformation of matrix polynomials is derived, which allows to obtain the Wold coefficients from the matrix coefficients characterizing the generalised matrix cepstral models. This algorithm also allows the definition of the matrix variance profile, providing important quantities for vector time series analysis. A nonparametric estimator based on a transformation of the smoothed periodogram is proposed for estimation of the matrix variance profile.
Resumo:
In this PhD thesis a new firm level conditional risk measure is developed. It is named Joint Value at Risk (JVaR) and is defined as a quantile of a conditional distribution of interest, where the conditioning event is a latent upper tail event. It addresses the problem of how risk changes under extreme volatility scenarios. The properties of JVaR are studied based on a stochastic volatility representation of the underlying process. We prove that JVaR is leverage consistent, i.e. it is an increasing function of the dependence parameter in the stochastic representation. A feasible class of nonparametric M-estimators is introduced by exploiting the elicitability of quantiles and the stochastic ordering theory. Consistency and asymptotic normality of the two stage M-estimator are derived, and a simulation study is reported to illustrate its finite-sample properties. Parametric estimation methods are also discussed. The relation with the VaR is exploited to introduce a volatility contribution measure, and a tail risk measure is also proposed. The analysis of the dynamic JVaR is presented based on asymmetric stochastic volatility models. Empirical results with S&P500 data show that accounting for extreme volatility levels is relevant to better characterize the evolution of risk. The work is complemented by a review of the literature, where we provide an overview on quantile risk measures, elicitable functionals and several stochastic orderings.
Resumo:
In the context of multivariate regression (MLR) and seemingly unrelated regressions (SURE) models, it is well known that commonly employed asymptotic test criteria are seriously biased towards overrejection. in this paper, we propose finite-and large-sample likelihood-based test procedures for possibly non-linear hypotheses on the coefficients of MLR and SURE systems.
Resumo:
Objectives. To investigate the test-retest stability of a standardized version of Nelson's (1976) Modified Card Sorting Test (MCST) and its relationships with demographic variables in a sample of healthy older adults. Design. A standard card order and administration were devised for the MCST and administered to participants at an initial assessment, and again at a second session conducted a minimum of six months later in order to examine its test-retest stability. Participants were also administered the WAIS-R at initial assessment in order to provide a measure of psychometric intelligence. Methods. Thirty-six (24 female, 12 male) healthy older adults aged 52 to 77 years with mean education 12.42 years (SD = 3.53) completed the MCST on two occasions approximately 7.5 months (SD = 1.61) apart. Stability coefficients and test-retest differences were calculated for the range of scores. The effect of gender on MCST performance was examined. Correlations between MCST scores and age, education and WAIS-R IQs were also determined. Results. Stability coefficients ranged from .26 for the percent perseverative errors measure to .49 for the failure to maintain set measure. Several measures were significantly correlated with age, education and WAIS-R IQs, although no effect of gender on MCST performance was found. Conclusions. None of the stability coefficients reached the level required for clinical decision making. The results indicate that participants' age, education, and intelligence need to be considered when interpreting MCST performance. Normative studies of MCST performance as well as further studies with patients with executive dysfunction are needed.
Resumo:
We calculate the density profiles and density correlation functions of the one-dimensional Bose gas in a harmonic trap, using the exact finite-temperature solutions for the uniform case, and applying a local density approximation. The results are valid for a trapping potential that is slowly varying relative to a correlation length. They allow a direct experimental test of the transition from the weak-coupling Gross-Pitaevskii regime to the strong-coupling, fermionic Tonks-Girardeau regime. We also calculate the average two-particle correlation which characterizes the bulk properties of the sample, and find that it can be well approximated by the value of the local pair correlation in the trap center.
Resumo:
Paracoccidioidomycosis is diagnosed from the direct observation of the causative agent, but serology can facilitate and decrease the time required for diagnosis. The objective of this study was to determine the influence of serum sample inactivation on the performance of the latex agglutination test (LAT) for detecting antibodies against Paracoccidioides brasiliensis. The sensitivity of LAT from inactivated or non-inactivated samples was 73% and 83%, respectively and the LAT selectivity was 79% and 90%, respectively. The LAT evaluated here was no more specific than the double-immunodiffusion assay. We suggest the investigation of other methods for improving the LAT, such as the use of deglycosylated antigen.
Resumo:
Swain corrects the chi-square overidentification test (i.e., likelihood ratio test of fit) for structural equation models whethr with or without latent variables. The chi-square statistic is asymptotically correct; however, it does not behave as expected in small samples and/or when the model is complex (cf. Herzog, Boomsma, & Reinecke, 2007). Thus, particularly in situations where the ratio of sample size (n) to the number of parameters estimated (p) is relatively small (i.e., the p to n ratio is large), the chi-square test will tend to overreject correctly specified models. To obtain a closer approximation to the distribution of the chi-square statistic, Swain (1975) developed a correction; this scaling factor, which converges to 1 asymptotically, is multiplied with the chi-square statistic. The correction better approximates the chi-square distribution resulting in more appropriate Type 1 reject error rates (see Herzog & Boomsma, 2009; Herzog, et al., 2007).
Resumo:
Standard methods for the analysis of linear latent variable models oftenrely on the assumption that the vector of observed variables is normallydistributed. This normality assumption (NA) plays a crucial role inassessingoptimality of estimates, in computing standard errors, and in designinganasymptotic chi-square goodness-of-fit test. The asymptotic validity of NAinferences when the data deviates from normality has been calledasymptoticrobustness. In the present paper we extend previous work on asymptoticrobustnessto a general context of multi-sample analysis of linear latent variablemodels,with a latent component of the model allowed to be fixed across(hypothetical)sample replications, and with the asymptotic covariance matrix of thesamplemoments not necessarily finite. We will show that, under certainconditions,the matrix $\Gamma$ of asymptotic variances of the analyzed samplemomentscan be substituted by a matrix $\Omega$ that is a function only of thecross-product moments of the observed variables. The main advantage of thisis thatinferences based on $\Omega$ are readily available in standard softwareforcovariance structure analysis, and do not require to compute samplefourth-order moments. An illustration with simulated data in the context ofregressionwith errors in variables will be presented.
Resumo:
We extend to score, Wald and difference test statistics the scaled and adjusted corrections to goodness-of-fit test statistics developed in Satorra and Bentler (1988a,b). The theory is framed in the general context of multisample analysis of moment structures, under general conditions on the distribution of observable variables. Computational issues, as well as the relation of the scaled and corrected statistics to the asymptotic robust ones, is discussed. A Monte Carlo study illustrates thecomparative performance in finite samples of corrected score test statistics.