933 resultados para fate


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Includes bibliography

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

For the first time, regulatory protocols defined in the OECD guidelines were applied to determine the fate properties of a nanopesticide in two agricultural soils with contrasting characteristics. The nanoformulation studied had no effect on the degradation kinetics of atrazine indicating that (1) the release of atrazine from the polymer nanocarriers occurred rapidly relative to the degradation kinetics (half-lives 36-53 days) and/or that (2) atrazine associated with the nanocarriers was subject to biotic or abiotic degradation. Sorption coefficients, derived from a batch and a centrifugation technique at a realistic soil-to-solution ratio, were higher for the nanoformulated atrazine than for the pure active ingredient. Results indicate that the nanoformulation had an effect on the fate of atrazine. However, since the protocols applied were designed to assess solutes, conclusions about the transport of atrazine loaded onto the nanocarriers should be made extremely cautiously. The centrifugation method applied over time (here over 7 days) appears to be a useful tool to indirectly assess the durability of nanopesticides under realistic soil-to-solution ratios and estimate the period of time during which an influence on the fate of the active ingredient may be expected. More detailed investigations into the bioavailability and durability of nanopesticides are necessary and will require the development of novel methods suitable to address both the "nano" and "organic" characteristics of polymer-based nanopesticides.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Weddell seals (Leptonychotes weddellii Lesson) at White Island, Antarctica form a small, completely enclosed, natural population hypothesized to be of recent origin, likely founded by individuals from nearby Erebus Bay. This population constitutes an ideal model to document a founder event and ensuing genetic drift, with implications for conservation. Here we combined historical accounts, census and tagging data since the late 1960s, and genetic data (41 microsatellite loci and mitochondrial DNA sequences) from 84 individuals representing nearly all individuals present between 1990 and 2000 to investigate the history of the founding of the White Island population, document its population dynamics and evaluate possible future threats. We fully resolved parental relationships over three overlapping generations. Cytonuclear disequilibrium among the first generation suggested that it comprised the direct descendants of a founding group. We estimated that the White Island population was founded by a small group of individuals that accessed the island during a brief break in the surrounding sea ice in the mid-1950s, consistent with historical accounts. Direct and indirect methods of calculating effective population size were highly congruent and suggested a minimum founding group consisting of three females and two males. The White Island population showed altered reproductive dynamics compared to Erebus Bay, including highly skewed sex ratio, documented inbred mating events, and the oldest known reproducing Weddell seals. A comparison with the putative source population showed that the White Island population has an effective inbreeding coefficient (Fe) of 0.29. Based on a pedigree analysis including the hypothesized founding group, 86% of the individuals for whom parents were known had inbreeding coefficients ranging 0.09–0.31. This high level of inbreeding was correlated with reduced pup survival. Seals at White Island therefore face the combined effects of low genetic variability, lack of immigration, and inbreeding depression. Ultimately, this study provides evidence of the effects of natural isolation on a large, long-lived vertebrate and can provide clues to the potential effects of anthropogenic- caused isolation of similar taxa.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bradykinin is not only important for inflammation and blood pressure regulation, but also involved in neuromodulation and neuroprotection. Here we describe novel functions for bradykinin and the kinin-B2 receptor (B2BkR) in differentiation of neural stem cells. In the presence of the B2BkR antagonist HOE-140 during rat neurosphere differentiation, neuron-specific beta 3-tubulin and enolase expression was reduced together with an increase in glial protein expression, indicating that bradykinin- induced receptor activity contributes to neurogenesis. In agreement, HOE-140 affected in the same way expression levels of neural markers during neural differentiation of murine P19 and human iPS cells. Kinin-B1 receptor agonists and antagonists did not affect expression levels of neural markers, suggesting that bradykinin-mediated effects are exclusively mediated via B2BkR. Neurogenesis was augmented by bradykinin in the middle and late stages of the differentiation process. Chronic treatment with HOE-140 diminished eNOS and nNOS as well as M1-M4 muscarinic receptor expression and also affected purinergic receptor expression and activity. Neurogenesis, gliogenesis, and neural migration were altered during differentiation of neurospheres isolated from B2BkR knock-out mice. Whole mount in situ hybridization revealed the presence of B2BkR mRNA throughout the nervous system in mouse embryos, and less beta 3-tubulin and more glial proteins were expressed in developing and adult B2BkR knock-out mice brains. As a underlying transcriptional mechanism for neural fate determination, HOE-140 induced up-regulation of Notch1 and Stat3 gene expression. Because pharmacological treatments did not affect cell viability and proliferation, we conclude that bradykinin-induced signaling provides a switch for neural fate determination and specification of neurotransmitter receptor expression.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this thesis the potential risks associated to the application of biochar in soil as well the stability of biochar were investigated. The study was focused on the potential risks arising from the occurrence of polycyclic aromatic hydrocarbons (PAHs) in biochar. An analytical method was developed for the determination of the 16 USEPA-PAHs in the original biochar and soil containing biochar. The method was successfully validated with a certified reference material for the soil matrix and compared with methods in use in other laboratories during a laboratory exercise within the EU-COST TD1107. The concentration of 16 USEPA-PAHs along with the 15 EU-PAHs, priority hazardous substances in food, was determined in a suite of currently available biochars for agricultural field applications derived from a variety of parent materials and pyrolysis conditions. Biochars analyzed contained the USEPA and some of the EU-PAHs at detectable levels ranging from 1.2 to 19 µg g-1. This method allowed investigating changes in PAH content and distribution in a four years study following biochar addition in soils in a vineyard (CNR-IBIMET). The results showed that biochar addition determined an increase of the amount of PAHs. However, the levels of PAHs in the soil remained within the maximum acceptable concentration for European countries. The vineyard soil performed by CNR-IBIMET was exploited to study the environmental stability of biochar and its impact on soil organic carbon. The stability of biochar was investigated by analytical pyrolysis (Py-GC-MS) and pyrolysis in the presence of hydrogen (HyPy). The findings showed that biochar amendment significantly influence soil stable carbon fraction concentration during the incubation period. Moreover, HyPy and Py-GC-MS were applied to biochars deriving from three different feedstock at two different pyrolysis temperatures. The results evidenced the influence of feedstock type and pyrolysis conditions on the degree of carbonisation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To evaluate systemic and limb ischemic event rates of PAD patients with prior leg amputation and determine predictors of adverse outcomes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

How the effects of biotic factors are moderated by abiotic factors, and their consequences for species interactions, is generally understudied in ecology. A key abiotic feature of forests is regular canopy disturbances that create temporary patches, or “gaps,” of above-average light availability. Co-occurring in lowland primary forest of Korup National Park (Cameroon), Microberlinia bisulcata and Tetraberlinia bifoliolata are locally dominant, ectomycorrhizal trees whose seeds share predator guilds in masting years. Here, we experimentally tested the impact of small mammal predators upon seedling abundance, growth, and survivorship. In 2007, we added a fixed density of seeds of each species to exclosures at 48 gap–understory locations across 82.5 ha within a large Microberlinia grove, and at 15 locations outside it. For both species, small mammals removed more seeds in gaps than in understory, whereas this was reversed for seeds killed by invertebrates. Nonetheless, Microberlinia lost twice as many seeds to small mammals, and more to invertebrates in exclosures, than Tetraberlinia, which was more prone to a pathogenic white fungus. After six weeks, both species had greater seedling establishment in gaps than understory, and in exclosures outside compared to exclosures inside the grove. In the subsequent two-year period, seedling growth and survivorship peaked in exclosures in gaps, but Microberlinia had more seedlings' stems clipped by animals than Tetraberlinia, and more than twice the percentage of leaf area damaged. Whereas Microberlinia seedling performance in gaps was inferior to Tetraberlinia inside the grove, outside it Microberlinia had reduced leaf damage, grew taller, and had many more leaves than Tetraberlinia. No evidence was found for “apparent mutualism” in the understory as seedling establishment of both species increased away from (>25 m) large stems of either species, pointing to “apparent competition” instead. In gaps, Microberlinia seedling establishment was lower near Tetraberlinia than conspecific adults because of context-dependent small mammal satiation. Stage-matrix analysis suggested that protecting Microberlinia from small mammals could increase its population growth rate by 0.06. In the light of prior research we conclude that small mammals and canopy gaps play an important role in promoting species coexistence in this forest, and that their strong interaction contributes to Microberlinia's currently very poor regeneration.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Protozoan parasites of the genus Plasmodium are the causative agents of malaria. Despite more than 100 years of research, the complex life cycle of the parasite still bears many surprises and it is safe to say that understanding the biology of the pathogen will keep scientists busy for many years to come. Malaria research has mainly concentrated on the pathological blood stage of Plasmodium parasites, leaving us with many questions concerning parasite development within the mosquito and during the exo-erythrocytic stage in the vertebrate host. After the discovery of the Plasmodium liver stage in the middle of the last century, it remained understudied for many years but the realization that it represents a promising target for vaccination approaches has brought it back into focus. The last decade saw many new and exciting discoveries concerning the exo-erythrocytic stage and in this review we will discuss the highlights of the latest developments in the field.