964 resultados para estuarine sediments


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dinoflagellate cysts are useful for reconstructing upper water conditions. For adequate reconstructions detailed information is required about the relationship between modern day environmental conditions and the geographic distribution of cysts in sediments. This Atlas summarises the modern global distribution of 71 organicwalled dinoflagellate cyst species. The synthesis is based on the integration of literature sources together with data of 2405 globally distributed surface sediment samples that have been preparedwith a comparable methodology and taxonomy. The distribution patterns of individual cyst species are being comparedwith environmental factors that are knownto influence dinoflagellate growth, gamete production, encystment, excystment and preservation of their organic-walled cysts: surface water temperature, salinity, nitrate, phosphate, chlorophyll-a concentrations and bottom water oxygen concentrations. Graphs are provided for every species depicting the relationship between seasonal and annual variations of these parameters and the relative abundance of the species. Results have been compared with previously published records; an overview of the ecological significance as well as information about the seasonal production of each individual species is presented. The relationship between the cyst distribution and variation in the aforementioned environmental parameters was analysed by performing a canonical correspondence analysis. All tested variables showed a positive relationship on the 99% confidence level. Sea-surface temperature represents the parameter corresponding to the largest amount of variance within the dataset (40%) followed by nitrate, salinity, phosphate and bottom-water oxygen concentration, which correspond to 34%, 33%, 25% and 24% of the variance, respectively. Characterisations of selected environments as well as a discussion about how these factors could have influenced the final cyst yield in sediments are included.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

New data on the settling velocity of artificial sediments and natural sands at high concentrations are presented. The data are compared with a widely used semiempirical Richardson and Zaki equation (Trans. Inst. Chem. Eng. 32 (1954) 35), which gives an accurate measure of the reduction in velocity as a function of concentration and an experimentally determined empirical power n. Here, a simple method of determining n is presented using standard equations for the clear water settling velocity and the seepage flow within fixed sediment beds. The resulting values for n are compared against values derived from new and existing laboratory data for beach and filter sands. For sands, the appropriate values of n are found to differ significantly from those suggested by Richardson and Zaki for spheres, and are typically larger, corresponding to a greater reduction in settling velocity at high concentrations. For fine and medium sands at concentrations of order 0.4, the hindered settling velocity reduces to about 70% of that expected using values of n derived for spheres. At concentrations of order 0.15, the hindered settling velocity reduces to less than half of the settling velocity in clear water. These reduced settling velocities have important implications for sediment transport modelling close to, and within, sheet flow layers and in the swash zone.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Moreton Bay Waterways and Catchments Partnership, now branded the Healthy Waterways Partnership, has built on the experience of the past 15 years here in South East Queensland (SEQ). It focuses on water quality and the ecosystem health of our freshwater, estuarine and marine systems through the implementation of actions by individual partners and the collective oversight of a regional work program that assists partners to prioritise their investments and address emerging issues. This regional program includes monitoring, reporting, marketing and communication, development of decision support tools, research that is directed to problem solving, and maintaining extensive consultative and engagement arrangements. The Partnership has produced information-based outcomes which have led to significant cost savings in the protection of water quality and ecosystem resources by its stakeholders. This has been achieved by: – providing a clear focus for management actions that has ownership of governments, industry and community; – targeted scientific research to address issues requiring appropriate management actions; – management actions based on a sound understanding of the waterways and rigorous public consultation; and, – development and implementation of a strategy that incorporates commitments from all levels of stakeholders. While focusing on our waterways, the Partnership’s approach includes addressing catchment management issues particularly relating to the management of diffuse pollution sources in both urban and rural landscapes as well as point source loads. We are now working with other stakeholders to develop a framework for integrated water management that will link water quality and water quantity goals and priorities.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Complete rare earth element (except Eu) and Y concentrations from the estuarine mixing zone (salinity =0.2 to 33) of Elimbah Creek, Queensland, Australia, were measured by quadrupole ICP-MS without preconcentration. High sampling density in the low salinity regime along with high quality data allow accurate tracing of the development of the typical marine rare earth element anomalies as well as Y/Ho fractionation. Over the entire estuary, the rare earth elements are strongly removed relative to a freshwater endmember (60-80% removal). This large overall removal occurs despite a strong remineralisation peak (190% for La, 130% for Y relative to the freshwater endmember) in the mid-salinity zone. Removal and remineralisation are accompanied by fractionation of the original (freshwater) rare earth element pattern, resulting in light rare earth element depletion. Estuarine fractionation generates a large positive La anomaly and a superchondritic Y/Ho ratio. Conversely, we observe no evidence to support the generation of the negative Ce anomaly in the estuary. With the exception of Ce, the typical marine rare earth element features can thus be attributed to estuarine mixing processes. The persistence of these features in hydrogenous sediments for at least 3.71 Ga highlights the importance of estuarine processes for marine chemistry on geological timescales. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

At Brisbane Airport, the construction of a diversion channel for Kedron Brook exposed a former beach, low cliff and sand spit, which, with their associated sediments and acid sulfate soils, demonstrate a postglacial high sea-level 1.3 - 1.4 m above present mean sea-level. The beach appears to date from 4000 to 5000 y BP. It varies in level where it lies above soft ground; these variations, and sag depressions that follow buried streamlines, indicate sediment consolidation since withdrawal of the sea from the former shore. Most of the area consists of former estuarine deposits, mangrove and saline marshes, and stranded tidal flats on which acid sulfate soils are widely developed. The modern landforms mostly reproduce subsurface features, to the extent that the surface relief replicates the landscape transgressed by the sea 7000 years ago. A small rise of sea-level possibly to +0.65 m occurred about 2000-3000 years ago. Foredunes near the present shore that are related to a slightly lower level 1000 - 500 years ago (-0.25 m) are currently subject to wave erosion.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Carbonate sediments are dynamic three-dimensional environments where the surface layers are constantly moving and mixing due to the energy of the water column. It is also an environment of dynamic biological, chemical and physical interaction and modification. The biological community can actively influence changes to sediment characteristics and associated biochemistry. Bioturbation resulting from macrofaunal activity disrupts sediment structure and biochemical arrangements and reduces the critical shear forces required to move sediment particles, adding to the dynamic and complex physical and biogeochemical nature of the sediment. Laboratory studies using both planner optodes and glass needle microsensors were used to measure abiotic sediment characteristics such as the depth distribution and concentrations of PAR. The biochemical nature of coral reef sediment were also investigated, specifically the quantification and the distribution of dissolved oxygen within coarse and fine-grained sediments under regimes of light and darkness. Results highlighted the significant contribution microalgal productivity and bioturbation has on distribution of dissolved oxygen in the upper sediment layers. On the reef flat a shallow water lander system was employed to measure concentrations of O2, pH, S, Ca and temperature over periods of 24 to 48 hours in coarse and fine-grained sediments. Similarities between laboratory and in situ results where evident, however the in situ environment was more dynamic and the distribution and concentrations of dissolved oxygen were more complex and correlated to irradiance, temperature and biological activity. Microsensor technology provides us with the opportunity to study, at very high resolutions, the upper irradiated; photosynthetically active regions of aquatic sediments along with anoxic processes deeper in sub-euphotic regions of the sediments.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The southern Everglades and Florida Bay have experienced a nearly 50 % reduction in freshwater flow resulting in increased salinity and landward expansion of mangrove forest. Given the marine end-member is a natural source of P to this region, it is necessary to understand the interactions between inflows and P availability in controlling the exchange of materials across the mangrove ecotone. From 2007 to 2008, we used sediment core incubations to quantify fluxes of dissolved inorganic N and P and dissolved organic carbon (DOC) in three ecotone areas (dwarf mangrove, pond, and bay). Experiments were repeated seasonally over 2 years involving P-enriched surface water as a factor. We saw consistent uptake of soluble reactive P (SRP), DOC, and nitrate + nitrite (N+N) by the soils/sediments and release of ammonium (NH4 +) from soils/sediments to the water column across all sites and seasons. P enrichment had no discernible effect on DIN or DOC flux, suggesting that rapid P uptake may have been more geochemically mediated. However, uptake of added P occurred across all sites and seasons, reflecting high uptake capacity in this carbonate system and the potential of the mangrove ecotone to sequester P as it becomes more available.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This synthesis dataset contains records of freshwater peat and lake sediments from continental shelves and coastal areas. Information included is site location (when available), thickness and description of terrestrial sediments as well as underlying and overlying sediments, dates (when available), and references.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Zinc stable isotopes measurements by MC-ICP-MS, validated by laboratory intercalibrations, were performed on wild oysters, suspended particles and filtered river/estuarine water samples to provide new constraints for the use of Zn isotopes as environmental tracers. The samples selected were representative of the long range (400 km) transport of metal (Zn, Cd, etc.) contamination from former Zn-refining activities at Decazeville (i.e. δ66Zn > 1 ‰) and its phasing out, recorded during 30 years in wild oysters from the Gironde Estuary mouth (RNO/ROCCH sample bank). The study also addresses additional anthropogenic sources (urban and viticulture) and focuses on geochemical reactivity of Zn in the turbidity gradient and the maximum turbidity zone (MTZ) of the fluvial Gironde Estuary. In this area, dissolved Zn showed a strong removal onto suspended particulate matter (SPM) and progressive enrichment in heavy isotopes with increasing SPM concentrations varying from δ66Zn = -0.02 ‰ at 2 mg/L to +0.90 ‰ at 1310 mg/L. These signatures were attributed to kinetically driven adsorption due to strongly increasing sorption sites in the turbidity gradient and MTZ of the estuary. Oysters from the estuary mouth, contaminated sediments from the Lot River and SPM entering the estuary showed parallel historical evolutions (1979-2010) for Zn/Cd ratios but not for δ66Zn values. Oysters had signatures varying from δ66Zn = 1.43 ‰ in 1983 to 1.18 ‰ in 2010 and were offset by δ66Zn = 0.6 - 0.7 ‰ compared to past (1988) and present SPM from the salinity gradient. Isotopic signatures in river-borne particles entering the Gironde Estuary under contrasting freshwater discharge regimes during 2003-2011 showed similar values (δ66Zn ≈ 0.35 ± 0.03 ‰; 1SD, n=15), i.e. they were neither related to former metal refining activities at least for the past decade nor clearly affected by other anthropogenic sources. Therefore, the Zn isotopic signatures in Gironde oysters reflect the geochemical reactivity of Zn in the estuary rather than signatures of past metallurgical contaminations in the watershed as recorded in contaminated river sediments. The study also shows that the isotopic composition of Zn is strongly fractionated by its geochemical reactivity in the Gironde Estuary, representative of meso-macrotidal estuarine systems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Sediment quality from Paranagua Estuarine System (PES), a highly important port and ecological zone, was evaluated by assessing three lines of evidence: (1) sediment physical-chemical characteristics; (2) sediment toxicity (elutriates, sediment-water interface, and whole sediment); and (3) benthic community structure. Results revealed a gradient of increasing degradation of sediments (i.e. higher concentrations of trace metals, higher toxicity, and impoverishment of benthic community structure) towards inner PES. Data integration by principal component analysis (PCA) showed positive correlation between some contaminants (mainly As, Cr, Ni, and Pb) and toxicity in samples collected from stations located in upper estuary and one station placed away from contamination sources. Benthic community structure seems to be affected by both pollution and natural fine characteristics of the sediments, which reinforces the importance of a weight-of-evidence approach to evaluate sediments of PES. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Sediment digging is an anthropogenic activity connected to the exploitation of living resources in estuarine and marine environments. The knowledge on the functional responses of the benthic assemblages to the physical disturbance is an important baseline to understand the ecological processes of the habitat recovery and restoration and to develop tools for the management of the harvesting activities. To investigate the effects of the digging activity of the bivalves on Zostera noltii seagrass beds a manipulative field experiment was conducted that included the enzymatic activity of sediments and the associated nematode assemblages. Four plots (two undisturbed serving as control and two dug to collect bivalves - treatment) with 18 subplots were randomly located at seagrass beds in the Mira estuary at the SW coast of Portugal. Samples were randomly and unrepeatably collected from three subplots of each plot in five different occasions, before sediment digging (T0) up to six months after disturbance (T5). Microbial activity in sediments was assess by determining the extracelular enzymatic activity of six hydrolytic enzymes (sulfatase, phosphatase, b -N-acetilglucosaminidase, b-glucosidase, urease, protease) and two oxidoreductases (phenol oxidase and peroxidase). The microbial community status was also assessed through the measurement of dehydrogenase, which reflects microbial respiration. The nematode assemblages composition, biodiversity and trophic composition at different sampling occasions were also analyzed. The fluorometric and biochemical parameters analysed of the Z. noltii plants during the experimental period showed a recovery of the seagrass beds, and it was detected an increase of the enzymatic activity of the sediments after disturbance. The nematodes assemblages were similar in all sampling occasions. The seagrass beds and the nematodes assemblages associated showed a high resilience to the stress caused by the traditional bivalves digging activity. The obtained results allow the development of a management programme for the commercial fishing activity to maintain the good environmental status and minimized the secondary environmental effects on marine and estuarine habitats through the establishment of a baseline for the regulation of the harvesting frequency.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Multi-element analyses of sediment samples from the Santos-Cubatão Estuarine System were carried out to investigate the spatial and seasonal variability of trace-element concentrations. The study area contains a rich mangrove ecosystem that is a habitat for tens of thousands of resident and migratory birds, some of them endangered globally. Enrichments of metals in fine-grained surface sediments are, in decreasing order, Hg, Mn, La, Ca, Sr, Cd, Zn, Pb, Ba, Cu, Cr, Fe, Nb, Y, Ni and Ga, relative to pre-industrial background levels. The maximum enrichment ranged from 49 (Hg) to 3.1 (Ga). Mercury concentrations were greater in the Cubatão river than in other sites, while the other elements showed greater concentrations in the Morrão river. Concentrations of Mn were significantly greater in winter and autumn than in summer and spring. However, other elements (e.g. Cd and Pb) showed the opposite, with greater concentrations in summer and spring. This study suggests that seasonal changes in physical and chemical conditions may affect the degree of sediment enrichment and therefore make the assessment of contamination difficult. Consequently, these processes need to be considered when assessing water quality and the potential contamination of biota.