958 resultados para empirical models
Resumo:
The subject of this study is to investigate the capability of spaceborne remote sensing data to predict ground concentrations of PM10 over the European Alpine region using satellite derived Aerosol Optical Depth (AOD) from the geostationary Spinning Enhanced Visible and InfraRed Imager (SEVIRI) and the polar-orbiting MODerate resolution Imaging Spectroradiometer (MODIS). The spatial and temporal resolutions of these aerosol products (10 km and 2 measurements per day for MODIS, ∼ 25 km and observation intervals of 15 min for SEVIRI) permit an evaluation of PM estimation from space at different spatial and temporal scales. Different empirical linear relationships between coincident AOD and PM10 observations are evaluated at 13 ground-based PM measurement sites, with the assumption that aerosols are vertically homogeneously distributed below the planetary Boundary Layer Height (BLH). The BLH and Relative Humidity (RH) variability are assessed, as well as their impact on the parameterization. The BLH has a strong influence on the correlation of daily and hourly time series, whilst RH effects are less clear and smaller in magnitude. Despite its lower spatial resolution and AOD accuracy, SEVIRI shows higher correlations than MODIS (rSEV∼ 0.7, rMOD∼ 0.6) with regard to daily averaged PM10. Advantages from MODIS arise only at hourly time scales in mountainous locations but lower correlations were found for both sensors at this time scale (r∼ 0.45). Moreover, the fraction of days in 2008 with at least one satellite observation was 27% for SEVIRI and 17% for MODIS. These results suggest that the frequency of observations plays an important role in PM monitoring, while higher spatial resolution does not generally improve the PM estimation. Ground-based Sun Photometer (SP) measurements are used to validate the satellite-based AOD in the study region and to discuss the impact of aerosols' micro-physical properties in the empirical models. A lower error limit of 30 to 60% in the PM10 assessment from space is estimated in the study area as a result of AOD uncertainties, variability of aerosols properties and the heterogeneity of ground measurement sites. It is concluded that SEVIRI has a similar capacity to map PM as sensors on board polar-orbiting platforms, with the advantage of a higher number of observations. However, the accuracy represents a serious limitation to the applicability of satellites for ground PM mapping, especially in mountainous areas.
Resumo:
Decision trees have been proposed as a basis for modifying table based injection to reduce transient particulate spikes during the turbocharger lag period. It has been shown that decision trees can detect particulate spikes in real time. In well calibrated electronically controlled diesel engines these spikes are narrow and are encompassed by a wider NOx spike. Decision trees have been shown to pinpoint the exact location of measured opacity spikes in real time thus enabling targeted PM reduction with near zero NOx penalty. A calibrated dimensional model has been used to demonstrate the possible reduction of particulate matter with targeted injection pressure pulses. Post injection strategy optimized for near stoichiometric combustion has been shown to provide additional benefits. Empirical models have been used to calculate emission tradeoffs over the entire FTP cycle. An empirical model based transient calibration has been used to demonstrate that such targeted transient modifiers are more beneficial at lower engine-out NOx levels.
Resumo:
Dimensional modeling, GT-Power in particular, has been used for two related purposes-to quantify and understand the inaccuracies of transient engine flow estimates that cause transient smoke spikes and to improve empirical models of opacity or particulate matter used for engine calibration. It has been proposed by dimensional modeling that exhaust gas recirculation flow rate was significantly underestimated and volumetric efficiency was overestimated by the electronic control module during the turbocharger lag period of an electronically controlled heavy duty diesel engine. Factoring in cylinder-to-cylinder variation, it has been shown that the electronic control module estimated fuel-Oxygen ratio was lower than actual by up to 35% during the turbocharger lag period but within 2% of actual elsewhere, thus hindering fuel-Oxygen ratio limit-based smoke control. The dimensional modeling of transient flow was enabled with a new method of simulating transient data in which the manifold pressures and exhaust gas recirculation system flow resistance, characterized as a function of exhaust gas recirculation valve position at each measured transient data point, were replicated by quasi-static or transient simulation to predict engine flows. Dimensional modeling was also used to transform the engine operating parameter model input space to a more fundamental lower dimensional space so that a nearest neighbor approach could be used to predict smoke emissions. This new approach, intended for engine calibration and control modeling, was termed the "nonparametric reduced dimensionality" approach. It was used to predict federal test procedure cumulative particulate matter within 7% of measured value, based solely on steady-state training data. Very little correlation between the model inputs in the transformed space was observed as compared to the engine operating parameter space. This more uniform, smaller, shrunken model input space might explain how the nonparametric reduced dimensionality approach model could successfully predict federal test procedure emissions when roughly 40% of all transient points were classified as outliers as per the steady-state training data.
Resumo:
Low parental monitoring is related to youth risk behaviors such as delinquency and aggression. The purpose of this dissertation was to describe the development and evaluation of a parent education intervention to increase parental monitoring in Hispanic parents of middle school children.^ The first study described the process of intervention mapping as used to develop Padres Trabajando por la Paz, a newsletter intervention for parents. Using theory, empirical literature, and information from the target population, performance objectives and determinants for monitoring were defined. Learning objectives were specified and a staged social-cognitive approach was used to develop methods and strategies delivered through newsletters.^ The second study examined the outcomes of a randomized trial of the newsletter intervention. Outcome measures consisted of a general measure of monitoring, parent and child reports of monitoring behaviors targeted by the intervention, and psychosocial determinants of monitoring (self-efficacy, norms, outcome expectancies, knowledge, and beliefs). Seventy-seven parents completed the randomized trial, half of which received four newsletters over an eight-week period. Results revealed a significant interaction effect for baseline and treatment for parent's reports of norms for monitoring (p =.009). Parents in the experimental condition who scored low at baseline reported increased norms for monitoring at follow-up. A significant interaction effect for child reports of parental monitoring behaviors (p =.04) reflected an small increase across baseline levels in the experimental condition and decreases for the control condition at higher baseline scores. Both groups of parents reported increased levels of monitoring at follow-up. No other outcome measures varied significantly by condition.^ The third study examined the relationship between the psychosocial determinants of parental monitoring and parental monitoring behaviors in the study population. Weak evidence for a relationship between outcome expectancies and parental monitoring behaviors suggests further research in the area utilizing stronger empirical models such as longitudinal design and structural equation modeling.^ The low-cost, minimal newsletter intervention showed promise for changing norms among Hispanic parents for parental monitoring. In light of the importance of parental monitoring as a protective factor for youth health risk behaviors, more research needs to be done to develop and evaluate interventions to increase parental monitoring. ^
Resumo:
The spatial and temporal dynamics of seagrasses have been studied from the leaf to patch (100 m**2) scales. However, landscape scale (> 100 km**2) seagrass population dynamics are unresolved in seagrass ecology. Previous remote sensing approaches have lacked the temporal or spatial resolution, or ecologically appropriate mapping, to fully address this issue. This paper presents a robust, semi-automated object-based image analysis approach for mapping dominant seagrass species, percentage cover and above ground biomass using a time series of field data and coincident high spatial resolution satellite imagery. The study area was a 142 km**2 shallow, clear water seagrass habitat (the Eastern Banks, Moreton Bay, Australia). Nine data sets acquired between 2004 and 2013 were used to create seagrass species and percentage cover maps through the integration of seagrass photo transect field data, and atmospherically and geometrically corrected high spatial resolution satellite image data (WorldView-2, IKONOS and Quickbird-2) using an object based image analysis approach. Biomass maps were derived using empirical models trained with in-situ above ground biomass data per seagrass species. Maps and summary plots identified inter- and intra-annual variation of seagrass species composition, percentage cover level and above ground biomass. The methods provide a rigorous approach for field and image data collection and pre-processing, a semi-automated approach to extract seagrass species and cover maps and assess accuracy, and the subsequent empirical modelling of seagrass biomass. The resultant maps provide a fundamental data set for understanding landscape scale seagrass dynamics in a shallow water environment. Our findings provide proof of concept for the use of time-series analysis of remotely sensed seagrass products for use in seagrass ecology and management.
Resumo:
Customer evolution and changes in consumers, determine the fact that the quality of the interface between marketing and sales may represent a true competitive advantage for the firm. Building on multidimensional theoretical and empirical models developed in Europe and on social network analysis, the organizational interface between the marketing and sales departments of a multinational high-growth company with operations in Argentina, Uruguay and Paraguay is studied. Both, attitudinal and social network measures of information exchange are used to make operational the nature and quality of the interface and its impact on performance. Results show the existence of a positive relationship of formalization, joint planning, teamwork, trust and information transfer on interface quality, as well as a positive relationship between interface quality and business performance. We conclude that efficient design and organizational management of the exchange network are essential for the successful performance of consumer goods companies that seek to develop distinctive capabilities to adapt to markets that experience vertiginous changes
Resumo:
En la actualidad, el seguimiento de la dinámica de los procesos medio ambientales está considerado como un punto de gran interés en el campo medioambiental. La cobertura espacio temporal de los datos de teledetección proporciona información continua con una alta frecuencia temporal, permitiendo el análisis de la evolución de los ecosistemas desde diferentes escalas espacio-temporales. Aunque el valor de la teledetección ha sido ampliamente probado, en la actualidad solo existe un número reducido de metodologías que permiten su análisis de una forma cuantitativa. En la presente tesis se propone un esquema de trabajo para explotar las series temporales de datos de teledetección, basado en la combinación del análisis estadístico de series de tiempo y la fenometría. El objetivo principal es demostrar el uso de las series temporales de datos de teledetección para analizar la dinámica de variables medio ambientales de una forma cuantitativa. Los objetivos específicos son: (1) evaluar dichas variables medio ambientales y (2) desarrollar modelos empíricos para predecir su comportamiento futuro. Estos objetivos se materializan en cuatro aplicaciones cuyos objetivos específicos son: (1) evaluar y cartografiar estados fenológicos del cultivo del algodón mediante análisis espectral y fenometría, (2) evaluar y modelizar la estacionalidad de incendios forestales en dos regiones bioclimáticas mediante modelos dinámicos, (3) predecir el riesgo de incendios forestales a nivel pixel utilizando modelos dinámicos y (4) evaluar el funcionamiento de la vegetación en base a la autocorrelación temporal y la fenometría. Los resultados de esta tesis muestran la utilidad del ajuste de funciones para modelizar los índices espectrales AS1 y AS2. Los parámetros fenológicos derivados del ajuste de funciones permiten la identificación de distintos estados fenológicos del cultivo del algodón. El análisis espectral ha demostrado, de una forma cuantitativa, la presencia de un ciclo en el índice AS2 y de dos ciclos en el AS1 así como el comportamiento unimodal y bimodal de la estacionalidad de incendios en las regiones mediterránea y templada respectivamente. Modelos autorregresivos han sido utilizados para caracterizar la dinámica de la estacionalidad de incendios y para predecir de una forma muy precisa el riesgo de incendios forestales a nivel pixel. Ha sido demostrada la utilidad de la autocorrelación temporal para definir y caracterizar el funcionamiento de la vegetación a nivel pixel. Finalmente el concepto “Optical Functional Type” ha sido definido, donde se propone que los pixeles deberían ser considerados como unidades temporales y analizados en función de su dinámica temporal. ix SUMMARY A good understanding of land surface processes is considered as a key subject in environmental sciences. The spatial-temporal coverage of remote sensing data provides continuous observations with a high temporal frequency allowing the assessment of ecosystem evolution at different temporal and spatial scales. Although the value of remote sensing time series has been firmly proved, only few time series methods have been developed for analyzing this data in a quantitative and continuous manner. In the present dissertation a working framework to exploit Remote Sensing time series is proposed based on the combination of Time Series Analysis and phenometric approach. The main goal is to demonstrate the use of remote sensing time series to analyze quantitatively environmental variable dynamics. The specific objectives are (1) to assess environmental variables based on remote sensing time series and (2) to develop empirical models to forecast environmental variables. These objectives have been achieved in four applications which specific objectives are (1) assessing and mapping cotton crop phenological stages using spectral and phenometric analyses, (2) assessing and modeling fire seasonality in two different ecoregions by dynamic models, (3) forecasting forest fire risk on a pixel basis by dynamic models, and (4) assessing vegetation functioning based on temporal autocorrelation and phenometric analysis. The results of this dissertation show the usefulness of function fitting procedures to model AS1 and AS2. Phenometrics derived from function fitting procedure makes it possible to identify cotton crop phenological stages. Spectral analysis has demonstrated quantitatively the presence of one cycle in AS2 and two in AS1 and the unimodal and bimodal behaviour of fire seasonality in the Mediterranean and temperate ecoregions respectively. Autoregressive models has been used to characterize the dynamics of fire seasonality in two ecoregions and to forecasts accurately fire risk on a pixel basis. The usefulness of temporal autocorrelation to define and characterized land surface functioning has been demonstrated. And finally the “Optical Functional Types” concept has been proposed, in this approach pixels could be as temporal unities based on its temporal dynamics or functioning.
Resumo:
The overall objective of this work is to provide diffuse illuminance availability at Madrid (Spain) through a statistical analysis of illuminance values corresponding to a long-term data series. The illuminance values are obtained from irradiance measurements by means of different empirical models for luminous efficacy. The values of diffuse illuminance on a horizontal and on vertical surfaces facing the four cardinal points are estimated and the different aspects related to daylight availability in an area with specific climatic conditions are analyzed. The experimental data consist of global and diffuse irradiance measurements on a horizontal surface provided by the National Meteorological Agency in Spain (AEMET) for Madrid. These data consist of hourly values measured in the period of 1980–2005. The statistical results derived correspond to a daylight typical year for the five surfaces considered. This information will be useful to building experts to estimate natural illumination availability when daylighting techniques are applied in building design with the main aim of electric energy savings.
Resumo:
RESUMEN El apoyo a la selección de especies a la restauración de la vegetación en España en los últimos 40 años se ha basado fundamentalmente en modelos de distribución de especies, también llamados modelos de nicho ecológico, que estiman la probabilidad de presencia de las especies en función de las condiciones del medio físico (clima, suelo, etc.). Con esta tesis se ha intentado contribuir a la mejora de la capacidad predictiva de los modelos introduciendo algunas propuestas metodológicas adaptadas a los datos disponibles actualmente en España y enfocadas al uso de los modelos en la selección de especies. No siempre se dispone de datos a una resolución espacial adecuada para la escala de los proyectos de restauración de la vegetación. Sin embrago es habitual contar con datos de baja resolución espacial para casi todas las especies vegetales presentes en España. Se propone un método de recalibración que actualiza un modelo de regresión logística de baja resolución espacial con una nueva muestra de alta resolución espacial. El método permite obtener predicciones de calidad aceptable con muestras relativamente pequeñas (25 presencias de la especie) frente a las muestras mucho mayores (más de 100 presencias) que requería una estrategia de modelización convencional que no usara el modelo previo. La selección del método estadístico puede influir decisivamente en la capacidad predictiva de los modelos y por esa razón la comparación de métodos ha recibido mucha atención en la última década. Los estudios previos consideraban a la regresión logística como un método inferior a técnicas más modernas como las de máxima entropía. Los resultados de la tesis demuestran que esa diferencia observada se debe a que los modelos de máxima entropía incluyen técnicas de regularización y la versión de la regresión logística usada en las comparaciones no. Una vez incorporada la regularización a la regresión logística usando penalización, las diferencias en cuanto a capacidad predictiva desaparecen. La regresión logística penalizada es, por tanto, una alternativa más para el ajuste de modelos de distribución de especies y está a la altura de los métodos modernos con mejor capacidad predictiva como los de máxima entropía. A menudo, los modelos de distribución de especies no incluyen variables relativas al suelo debido a que no es habitual que se disponga de mediciones directas de sus propiedades físicas o químicas. La incorporación de datos de baja resolución espacial proveniente de mapas de suelo nacionales o continentales podría ser una alternativa. Los resultados de esta tesis sugieren que los modelos de distribución de especies de alta resolución espacial mejoran de forma ligera pero estadísticamente significativa su capacidad predictiva cuando se incorporan variables relativas al suelo procedente de mapas de baja resolución espacial. La validación es una de las etapas fundamentales del desarrollo de cualquier modelo empírico como los modelos de distribución de especies. Lo habitual es validar los modelos evaluando su capacidad predictiva especie a especie, es decir, comparando en un conjunto de localidades la presencia o ausencia observada de la especie con las predicciones del modelo. Este tipo de evaluación no responde a una cuestión clave en la restauración de la vegetación ¿cuales son las n especies más idóneas para el lugar a restaurar? Se ha propuesto un método de evaluación de modelos adaptado a esta cuestión que consiste en estimar la capacidad de un conjunto de modelos para discriminar entre las especies presentes y ausentes de un lugar concreto. El método se ha aplicado con éxito a la validación de 188 modelos de distribución de especies leñosas orientados a la selección de especies para la restauración de la vegetación en España. Las mejoras metodológicas propuestas permiten mejorar la capacidad predictiva de los modelos de distribución de especies aplicados a la selección de especies en la restauración de la vegetación y también permiten ampliar el número de especies para las que se puede contar con un modelo que apoye la toma de decisiones. SUMMARY During the last 40 years, decision support tools for plant species selection in ecological restoration in Spain have been based on species distribution models (also called ecological niche models), that estimate the probability of occurrence of the species as a function of environmental predictors (e.g., climate, soil). In this Thesis some methodological improvements are proposed to contribute to a better predictive performance of such models, given the current data available in Spain and focusing in the application of the models to selection of species for ecological restoration. Fine grained species distribution data are required to train models to be used at the scale of the ecological restoration projects, but this kind of data are not always available for every species. On the other hand, coarse grained data are available for almost every species in Spain. A recalibration method is proposed that updates a coarse grained logistic regression model using a new fine grained updating sample. The method allows obtaining acceptable predictive performance with reasonably small updating sample (25 occurrences of the species), in contrast with the much larger samples (more than 100 occurrences) required for a conventional modeling approach that discards the coarse grained data. The choice of the statistical method may have a dramatic effect on model performance, therefore comparisons of methods have received much interest in the last decade. Previous studies have shown a poorer performance of the logistic regression compared to novel methods like maximum entropy models. The results of this Thesis show that the observed difference is caused by the fact that maximum entropy models include regularization techniques and the versions of logistic regression compared do not. Once regularization has been added to the logistic regression using a penalization procedure, the differences in model performance disappear. Therefore, penalized logistic regression may be considered one of the best performing methods to model species distributions. Usually, species distribution models do not consider soil related predictors because direct measurements of the chemical or physical properties are often lacking. The inclusion of coarse grained soil data from national or continental soil maps could be a reasonable alternative. The results of this Thesis suggest that the performance of the models slightly increase after including soil predictors form coarse grained soil maps. Model validation is a key stage of the development of empirical models, such as species distribution models. The usual way of validating is based on the evaluation of model performance for each species separately, i.e., comparing observed species presences or absence to predicted probabilities in a set of sites. This kind of evaluation is not informative for a common question in ecological restoration projects: which n species are the most suitable for the environment of the site to be restored? A method has been proposed to address this question that estimates the ability of a set of models to discriminate among present and absent species in a evaluation site. The method has been successfully applied to the validation of 188 species distribution models used to support decisions on species selection for ecological restoration in Spain. The proposed methodological approaches improve the predictive performance of the predictive models applied to species selection in ecological restoration and increase the number of species for which a model that supports decisions can be fitted.
Resumo:
The computational and cooling power demands of enterprise servers are increasing at an unsustainable rate. Understanding the relationship between computational power, temperature, leakage, and cooling power is crucial to enable energy-efficient operation at the server and data center levels. This paper develops empirical models to estimate the contributions of static and dynamic power consumption in enterprise servers for a wide range of workloads, and analyzes the interactions between temperature, leakage, and cooling power for various workload allocation policies. We propose a cooling management policy that minimizes the server energy consumption by setting the optimum fan speed during runtime. Our experimental results on a presently shipping enterprise server demonstrate that including leakage awareness in workload and cooling management provides additional energy savings without any impact on performance.
Resumo:
El correcto pronóstico en el ámbito de la logística de transportes es de vital importancia para una adecuada planificación de medios y recursos, así como de su optimización. Hasta la fecha los estudios sobre planificación portuaria se basan principalmente en modelos empíricos; que se han utilizado para planificar nuevas terminales y desarrollar planes directores cuando no se dispone de datos iniciales, analíticos; más relacionados con la teoría de colas y tiempos de espera con formulaciones matemáticas complejas y necesitando simplificaciones de las mismas para hacer manejable y práctico el modelo o de simulación; que requieren de una inversión significativa como para poder obtener resultados aceptables invirtiendo en programas y desarrollos complejos. La Minería de Datos (MD) es un área moderna interdisciplinaria que engloba a aquellas técnicas que operan de forma automática (requieren de la mínima intervención humana) y, además, son eficientes para trabajar con las grandes cantidades de información disponible en las bases de datos de numerosos problemas prácticos. La aplicación práctica de estas disciplinas se extiende a numerosos ámbitos comerciales y de investigación en problemas de predicción, clasificación o diagnosis. Entre las diferentes técnicas disponibles en minería de datos las redes neuronales artificiales (RNA) y las redes probabilísticas o redes bayesianas (RB) permiten modelizar de forma conjunta toda la información relevante para un problema dado. En el presente trabajo se han analizado dos aplicaciones de estos casos al ámbito portuario y en concreto a contenedores. En la Tesis Doctoral se desarrollan las RNA como herramienta para obtener previsiones de tráfico y de recursos a futuro de diferentes puertos, a partir de variables de explotación, obteniéndose valores continuos. Para el caso de las redes bayesianas (RB), se realiza un trabajo similar que para el caso de las RNA, obteniéndose valores discretos (un intervalo). El principal resultado que se obtiene es la posibilidad de utilizar tanto las RNA como las RB para la estimación a futuro de parámetros físicos, así como la relación entre los mismos en una terminal para una correcta asignación de los medios a utilizar y por tanto aumentar la eficiencia productiva de la terminal. Como paso final se realiza un estudio de complementariedad de ambos modelos a corto plazo, donde se puede comprobar la buena aceptación de los resultados obtenidos. Por tanto, se puede concluir que estos métodos de predicción pueden ser de gran ayuda a la planificación portuaria. The correct assets’ forecast in the field of transportation logistics is a matter of vital importance for a suitable planning and optimization of the necessary means and resources. Up to this date, ports planning studies were basically using empirical models to deal with new terminals planning or master plans development when no initial data are available; analytical models, more connected to the queuing theory and the waiting times, and very complicated mathematical formulations requiring significant simplifications to acquire a practical and easy to handle model; or simulation models, that require a significant investment in computer codes and complex developments to produce acceptable results. The Data Mining (DM) is a modern interdisciplinary field that include those techniques that operate automatically (almost no human intervention is required) and are highly efficient when dealing with practical problems characterized by huge data bases containing significant amount of information. These disciplines’ practical application extends to many commercial or research fields, dealing with forecast, classification or diagnosis problems. Among the different techniques of the Data Mining, the Artificial Neuronal Networks (ANN) and the probabilistic – or Bayesian – networks (BN) allow the joint modeling of all the relevant information for a given problem. This PhD work analyses their application to two practical cases in the ports field, concretely to container terminals. This PhD work details how the ANN have been developed as a tool to produce traffic and resources forecasts for several ports, based on exploitation variables to obtain continuous values. For the Bayesian networks case (BN), a similar development has been carried out, obtaining discreet values (an interval). The main finding is the possibility to use ANN and BN to estimate future needs of the port’s or terminal’s physical parameters, as well as the relationship between them within a specific terminal, that allow a correct assignment of the necessary means and, thus, to increase the terminal’s productive efficiency. The final step is a short term complementarily study of both models, carried out in order to verify the obtained results. It can thus be stated that these prediction methods can be a very useful tool in ports’ planning.
Resumo:
La mecanización de las labores del suelo es la causa, por su consumo energético e impacto directo sobre el medio ambiente, que más afecta a la degradación y pérdida de productividad de los suelos. Entre los factores de disminución de la productividad se deben considerar la compactación, la erosión, el encostramiento y la pérdida de estructura. Todo esto obliga a cuidar el manejo agrícola de los suelos tratando de mejorar las condiciones del suelo y elevar sus rendimientos sin comprometer aspectos económicos, ecológicos y ambientales. En el presente trabajo se adecuan los parámetros constitutivos del modelo de Drucker Prager Extendido (DPE) que definen la fricción y la dilatancia del suelo en la fase de deformación plástica, para minimizar los errores en las predicciones durante la simulación de la respuesta mecánica de un Vertisol mediante el Método de Elementos Finitos. Para lo cual inicialmente se analizaron las bases teóricas que soportan este modelo, se determinaron las propiedades y parámetros físico-mecánicos del suelo requeridos como datos de entrada por el modelo, se determinó la exactitud de este modelo en las predicciones de la respuesta mecánica del suelo, se estimaron mediante el método de aproximación de funciones de Levenberg-Marquardt los parámetros constitutivos que definen la trayectoria de la curva esfuerzo-deformación plástica. Finalmente se comprobó la exactitud de las predicciones a partir de las adecuaciones realizadas al modelo. Los resultados permitieron determinar las propiedades y parámetros del suelo, requeridos como datos de entrada por el modelo, mostrando que su magnitud está en función su estado de humedad y densidad, además se obtuvieron los modelos empíricos de estas relaciones exhibiendo un R2>94%. Se definieron las variables que provocan las inexactitudes del modelo constitutivo (ángulo de fricción y dilatancia), mostrando que las mismas están relacionadas con la etapa de falla y deformación plástica. Finalmente se estimaron los valores óptimos de estos ángulos, disminuyendo los errores en las predicciones del modelo DPE por debajo del 4,35% haciéndelo adecuado para la simulación de la respuesta mecánica del suelo investigado. ABSTRACT The mechanization using farming techniques is one of the main factors that affects the most the soil, causing its degradation and loss of productivity, because of its energy consumption and direct impact on the environment. Compaction, erosion, crusting and loss of structure should be considered among the factors that decrease productivity. All this forces the necessity to take care of the agricultural-land management trying to improve soil conditions and increase yields without compromising economic, ecological and environmental aspects. The present study was aimed to adjust the parameters of the Drucker-Prager Extended Model (DPE), defining friction and dilation of soil in plastic deformation phase, in order to minimize the error of prediction when simulating the mechanical response of a Vertisol through the fine element method. First of all the theoretic fundamentals that withstand the model were analyzed. The properties and physical-mechanical parameters of the soil needed as input data to initialize the model, were established. And the precision of the predictions for the mechanical response of the soil was assessed. Then the constitutive parameters which define the path of the plastic stress-strain curve were estimated through Levenberg-Marquardt method of function approximations. Lastly the accuracy of the predictions from the adequacies made to the model was tested. The results permitted to determine those properties and parameters of the soil, needed in order to initialize the model. It showed that their magnitude is in function of density and humidity. Moreover, the empirical models from these relations were obtained: R2>94%. The variables producing inaccuracies in the constitutive model (angle of repose and dilation) were defined, and there was showed that they are linked with the plastic deformation and rupture point. Finally the optimal values of these angles were established, obtaining thereafter error values for the DPE model under 4, 35%, and making it suitable for the simulation of the mechanical response of the soil under study.
Resumo:
Actualmente el sector privado posee un papel relevante en la provisión y gestión de infraestructuras de transporte en los países de ingreso medio‐bajo, principalmente a través de los proyectos de participación público‐privada (PPPs). Muchos países han impulsado este tipo de proyectos con el fin de hacer frente a la gran demanda de infraestructuras de transporte existente, debido a la escasez de recursos públicos y a la falta de eficiencia en la provisión de los servicios públicos. Como resultado, las PPPs han experimentado un crecimiento importante en las últimas dos décadas a nivel mundial. A pesar de esta tendencia creciente, muchos países no han sido capaces de atraer la participación del sector privado para la provisión de sus infraestructuras o no han logrado el nivel de participación privada que habrían requerido para alcanzar sus objetivos. Según numerosos autores, el desarrollo y el éxito de los proyectos PPP de infraestructuras de transporte de cualquier país está condicionado por una diversidad de factores, siendo uno de ellos la calidad de su entorno institucional. La presente tesis tiene como objetivo principal analizar la influencia del entorno institucional en el volumen de inversión en proyectos de participación público‐privada de infraestructuras de transporte en los países de ingreso medio‐bajo. Para acometer dicho objetivo se ha realizado un análisis empírico de 81 países distribuidos en seis regiones del mundo, durante el periodo 1996‐2013. En el análisis se han desarrollado dos modelos empíricos aplicando principalmente dos metodologías: el contraste de hipótesis y los modelos de datos de panel Tobit. El desarrollo de estos modelos ha permitido analizar de una forma exhaustiva el tema de estudio. Los resultados obtenidos aportan evidencia de que la calidad del entorno institucional posee una influencia significativa en el volumen de inversión en los proyectos PPP de transporte. En general, en esta tesis se muestran evidencias empíricas de que el sector privado ha tendido a invertir en mayor medida en países con entornos institucionales fuertes, es decir, en aquellos países en los que ha existido un mayor nivel de Estado de derecho, estabilidad política y regulatoria, efectividad del gobierno, así como un mayor control de la corrupción. Además, aquellos países donde se ha registrado una mejora en el nivel de su calidad institucional también han experimentado un incremento en el volumen de inversión en PPP de transporte. The private sector has an important role in the provision and management of transport infrastructure in countries of medium‐low income, primarily through projects of public‐private partnerships (PPPs). Many countries have developed PPP projects to meet the high demand of transport infrastructure, due to the scarcity of public resources and the lack of efficiency in the provision of public services. As a result, PPPs have experienced a significant growth, worldwide, in the past two decades. Despite this growing trend, many countries have not been able to attract private sector participation in the provision of infrastructure or have not accomplished the level of private participation that would have required to achieve its objectives. According to various authors, the development of PPP projects for transport infrastructure is determined by a number of factors, one of them being the quality of the institutional environment. The main objective of this dissertation is to analyze the influence of the institutional environment on the volume of investment, in projects of public‐private partnerships for transport infrastructure in countries of medium‐low income. In order to meet this objective, we conducted an empirical analysis of 81 countries, in six regions of the world, during the period of 1996‐2013. The analysis used two empirical models, implementing different methodologies and various statistical techniques: hypothesis testing, and Tobit model using panel data. The development of these models allowed to carry out a more comprehensive analysis. The results show that the quality of the institutional environment has a significant influence on the volume of investment in PPP projects of transport. Overall, this dissertation shows that the private sector tends to invest more in countries with stronger institutional environments, i.e. countries where there has been a higher level of Rule of Law, political and regulatory stability, and an effective control of corruption. In addition, those that have improved the level of institutional quality have also experienced an increase in the volume of investment in PPP of transport.
Resumo:
Estimativas sobre alterações climáticas globais têm aumentando a demanda por estudos sobre propriedades dos solos relativamente secos e limitações impostas à absorção de água pelas plantas em condições de escassez hídrica. Neste estudo, fatores que influenciam a retenção da água no solo e o murchamento de plantas foram avaliados com base no conceito de equilíbrio da água no solo. Objetivou-se com este estudo: (i) avaliar a confiabilidade de medições do conteúdo de água no solo sob altas sucções matriciais em câmaras de pressão, usando como referência a técnica de ponto de orvalho (ii) avaliar as interações entre espécies de plantas e solos com diferentes classes texturais no ponto de murcha permanente (iii) investigar as relações entre equilíbrio hidráulico da água no solo e murchamento de plantas a partir do conceito de corte hidráulico. Para tanto, um experimento para avaliar a influência dos tipos de solos e espécies de plantas, no ponto de murcha permanente foi conduzido em casa de vegetação da Escola Superior de Agricultura \"Luiz de Queiroz\" da Universidade de São Paulo, Piracicaba, São Paulo. Avaliou-se o murchamento de plantas de girassol (Helianthus annuus L.), milho (Zea mays L.) e soja (Glycine max L.). Os solos utilizados no estudo foram coletados na camada superficial (0-10 cm) em quatro áreas, selecionadas com o objetivo de obter classes texturais contrastantes, localizadas no município de Piracicaba, São Paulo, Brasil. Sub-amostras foram utilizadas para determinação da distribuição do tamanho de partículas e atributos químicos. Amostras indeformadas foram coletadas para a determinação da curva de retenção da água no solo pela técnica de câmaras de pressão. Adicionalmente, amostras deformadas foram utilizadas para determinação das características de retenção da água no solo pela técnica do ponto de orvalho em altos valores de sucções matriciais. Os dados de retenção de água no solo foram ajustados a modelos empíricos para estimativas da sucção matricial e conteúdo de água relacionada à água em equilíbrio hidráulico (água residual). Foram observadas similaridades nas determinações das características de retenção da água no solo entre as técnicas de câmaras de pressão e ponto de orvalho, sugerindo a boa drenagem das amostras de solo em câmaras de pressão. Interações significativas foram observadas entre os tipos de solos e espécies de plantas no ponto de murcha permanente, indicando que o movimento de água no contínuo solo-planta-atmosfera foi dependente de resistências relacionadas tanto ao solo quanto às plantas. Ou seja, tanto à capacidade do solo em transportar água até raízes, quanto à habilidade das plantas em absorver a água transportada, assim como, aos processos de regulação de água que ocorrem nas plantas. A abordagem baseada no conteúdo de água residual para o intervalo de sucções matriciais de 0 a 15.000 hPa não foi adequada para ilustrar a condição de equilíbrio hidráulico da água no solo, definidos pelo corte hidráulico, e relações com as sucções matriciais em ocorre o murchamento de plantas.
Resumo:
Este trabalho tem como objetivo estudar as modificações introduzidas, ao longo de sucessivas versões, nos modelos empíricos do programa computacional FRAPCON utilizado para a simulação do comportamento sob irradiação de varetas combustíveis de Reatores a Água Leve Pressurizada (Pressurized Water Reactor - PWR) em regime de estado estacionário e sob condições de alta queima. No estudo, foram analisados os modelos empíricos utilizados pelo FRAPCON e que são apresentados em sua documentação oficial. Um estudo bibliográfico foi conduzido sobre os efeitos da alta queima em combustíveis nucleares visando melhorar o entendimento dos modelos utilizados pelo FRAPCON nestas condições. Foram feitas simulações do comportamento sob irradiação de uma vareta combustível típica de um reator PWR utilizando as versões 3.3, 3.4 e 3.5 do FRAPCON. Os resultados apresentados pelas diferentes versões do programa foram comparados entre si de forma a verificar as consequências das mudanças de modelo nos parâmetros de saída do programa. Foi possível observar que as modificações introduzidas trouxeram diferenças significativas nos resultados de parâmetros térmicos e mecânicos da vareta combustível, principalmente quando se evoluiu da versão FRAPCON-3.3 para a versão FRAPCON-3.5. Nessa ultima versão, obteve-se menores temperaturas na vareta combustível, menores tensões e deformações no revestimento, menor espessura da camada de oxido formada no revestimento a altas queimas na vareta combustível.