990 resultados para embryo sac
Resumo:
A conductometric micromethod combined with image analysis system has been developed allowing to determine the CO2 production within 'two-dimensional' tissues, i.e., flat and thin cell layers or epithelial sheets. The preparation was mounted into an airtight chamber separated in two compartments by a thin silicone membrane permeable to gases. The lower compartment contained the nutritive medium and the preparation. The upper compartment and a conductivity measuring capillary connected in series were perfused with a solution of Ba(OH)2. The CO2 produced by the tissue precipitated as BaCO3 and the resulting decrease of electrical conductivity was linearly related to the total CO2 production. In addition, the pattern of CO2 production was directly observable as the BaCO3 crystals formed upon the silicone membrane over the regions which produced CO2. The spatial distribution of the crystals was quantified by video image processing and the regional CO2 production evaluated with a spatial resolution of 100 microns. This new microtechnique was originally developed to study the CO2 production in the early chick blastoderm which is a disc 1-5 cells thick. At the stage of young neurula the CO2 production was found to be 235 +/- 37 nmol.h-1 (mean +/- SD; n = 10) per blastoderm and large variations of local CO2 production were detected from one region to another (from 0.6 to 6.5 nmol.h-1.mm-2). These results indicate a high metabolic and functional differentiation of cells within the blastoderm. The possible applications and improvements of such a microtechnique are discussed.
Resumo:
Ascertaining when and where genes are expressed is of crucial importance to understanding or predicting the physiological role of genes and proteins and how they interact to form the complex networks that underlie organ development and function. It is, therefore, crucial to determine on a genome-wide level, the spatio-temporal gene expression profiles at cellular resolution. This information is provided by colorimetric RNA in situ hybridization that can elucidate expression of genes in their native context and does so at cellular resolution. We generated what is to our knowledge the first genome-wide transcriptome atlas by RNA in situ hybridization of an entire mammalian organism, the developing mouse at embryonic day 14.5. This digital transcriptome atlas, the Eurexpress atlas (http://www.eurexpress.org), consists of a searchable database of annotated images that can be interactively viewed. We generated anatomy-based expression profiles for over 18,000 coding genes and over 400 microRNAs. We identified 1,002 tissue-specific genes that are a source of novel tissue-specific markers for 37 different anatomical structures. The quality and the resolution of the data revealed novel molecular domains for several developing structures, such as the telencephalon, a novel organization for the hypothalamus, and insight on the Wnt network involved in renal epithelial differentiation during kidney development. The digital transcriptome atlas is a powerful resource to determine co-expression of genes, to identify cell populations and lineages, and to identify functional associations between genes relevant to development and disease.
Resumo:
The objective of this work was to evaluate the in vitro maintenance of oil palm (Elaeis guineensis and E. oleifera) accessions under slow-growth conditions. Plants produced by embryo rescue were subject to 1/2MS culture medium supplemented with the carbohydrates sucrose, mannitol, and sorbitol at 1, 2, and 3% under 20 and 25±2ºC. After 12 months, the temperature of 20°C reduced plant growth. Sucrose is the most appropriate carbohydrate for maintaining the quality of the plants, whereas mannitol and sorbitol result in a reduced plant survival.
Resumo:
Within a developing organism, cells require information on where they are in order to differentiate into the correct cell-type. Pattern formation is the process by which cells acquire and process positional cues and thus determine their fate. This can be achieved by the production and release of a diffusible signaling molecule, called a morphogen, which forms a concentration gradient: exposure to different morphogen levels leads to the activation of specific signaling pathways. Thus, in response to the morphogen gradient, cells start to express different sets of genes, forming domains characterized by a unique combination of differentially expressed genes. As a result, a pattern of cell fates and specification emerges.Though morphogens have been known for decades, it is not yet clear how these gradients form and are interpreted in order to yield highly robust patterns of gene expression. During my PhD thesis, I investigated the properties of Bicoid (Bcd) and Decapentaplegic (Dpp), two morphogens involved in the patterning of the anterior-posterior axis of Drosophila embryo and wing primordium, respectively. In particular, I have been interested in understanding how the pattern proportions are maintained across embryos of different sizes or within a growing tissue. This property is commonly referred to as scaling and is essential for yielding functional organs or organisms. In order to tackle these questions, I analysed fluorescence images showing the pattern of gene expression domains in the early embryo and wing imaginal disc. After characterizing the extent of these domains in a quantitative and systematic manner, I introduced and applied a new scaling measure in order to assess how well proportions are maintained. I found that scaling emerged as a universal property both in early embryos (at least far away from the Bcd source) and in wing imaginal discs (across different developmental stages). Since we were also interested in understanding the mechanisms underlying scaling and how it is transmitted from the morphogen to the target genes down in the signaling cascade, I also quantified scaling in mutant flies where this property could be disrupted. While scaling is largely conserved in embryos with altered bcd dosage, my modeling suggests that Bcd trapping by the nuclei as well as pre-steady state decoding of the morphogen gradient are essential to ensure precise and scaled patterning of the Bcd signaling cascade. In the wing imaginal disc, it appears that as the disc grows, the Dpp response expands and scales with the tissue size. Interestingly, scaling is not perfect at all positions in the field. The scaling of the target gene domains is best where they have a function; Spalt, for example, scales best at the position in the anterior compartment where it helps to form one of the anterior veins of the wing. Analysis of mutants for pentagone, a transcriptional target of Dpp that encodes a secreted feedback regulator of the pathway, indicates that Pentagone plays a key role in scaling the Dpp gradient activity.
Resumo:
Distribution of fibronectin-like immunoreactivity was studied in the area opaca of the young chick embryo (stages 4-6 HH) by use of the immunofluorescence and protein A-coupled to colloidal gold techniques. Fibronectin, associated to the basement membrane, formed a fibrillar network, the pattern of which changed from the centre to the periphery of the area opaca. At the ultrastructural level, differences in fibronectin distribution were found between non-moving and moving cells. The epithelial-like cells presented fibronectin staining exclusively on their basal side. Actively migrating cells (edge and mesodermal cells) showed immunoreactive material localized around their entire surface and within the cytoplasm. The fibronectin distribution is discussed in relation to three important phenomena taking place during the early growth of the area opaca: anchorage and migration of the edge cells, modification of cell shape in relation to mechanical tension, and expansion of the area vasculosa.
Resumo:
Fetal development is studied since the advent of two-dimensional ultrasonography. However, a detailed assessment of structures and surfaces improved with three-dimensional ultrasonography. Currently, it is possible to identify embryonic components and fetal parts with greater detail, at all pregnancy trimesters, using the HD live software, where the images gain realistic features by means of appropriate control of lighting and shadowing effects. In the present study, the authors utilized this resource to follow-up, by means of images, the development of a normal pregnancy along all trimesters.
Resumo:
Tutkimuksessa tarkasteltiin vuonna 2009 toimintansa käynnistävää kansainvälistä ilmakuljetusyhteistyöhankketta Strategic Airlift Capability (SAC) puolustusvoimien kolmen päätehtävän näkökulmasta. Strategic Airlift Capability on 10 Nato-maan sekä Ruotsin ja Suomen välinen yhteistyösopimus, jolla varmistetaan raskas ilmakuljetuskyky jäsenmaiden käyttöön seuraavaksi 26 vuodeksi. Raskas ilmakuljetuskyky tuotetaan kolmella SAC-järjestelyn jäsenmaiden yhteisesti omistamalla Boeing C-17 Globemaster III strategisella kuljetuslentokoneella. Tutkimuksen päätutkimuskysymys oli seuraava: Mitkä ovat keskeisimmät SAC-järjestelyn mahdollisuudet ja haasteet puolustusvoimien kolmen päätehtävän näkökulmasta ja mitä toimenpiteitä nämä edellyttävät puolustusvoimilta? Tutkimus oli luonteeltaan kvalitatiivinen. Tutkimusmenetelmänä käytettiin logistiikan tutkimukseen hyvin soveltuvaa abduktio-menetelmää, jossa teorian kehittäminen ja empiirisen tutkimusaineiston analysointi ja testaus vuorottelevat. Tutkimusasetelma oli hermeneuttinen. Tutkimusaineiston analysoinnissa käytettiin menetelmänä aineistopohjaista sisällönanalyysiä. Kahdella Delfoi-menetelmään perustuvalla kyselyllä selvitettiin puolustushallinnon sekä muiden hallinnonalojen ja siviilitoimijoiden näkemyksiä SAC-järjestelystä. Tutkimuksen yhtenä menetelmänä oli SWOT-analyysi.
Resumo:
RESUMO Neste trabalho, avaliou-se o efeito combinado de duas unidades de tratamento na remoção de nitrogênio total Kjeldahl (NTK) e fósforo total (PT). As unidades avaliadas receberam alimentação contínua, sendo um reator anaeróbio de manta de lodo e fluxo ascendente tipo RAFA, com volume útil de 96 L, seguido de um sistema alagado construído (SAC) com capacidade para 237 L. O experimento foi conduzido em três fases, variando o tempo de detenção hidráulica (TDH) no reator anaeróbio de: 59 h, 19,5 h e 5 h, e no SAC 146 h, 48 h e 13 h, respectivamente, nas fases I, II e III. A carga orgânica volumétrica (COV) aplicada foi de 1,2; 1,3 e 13,0 kg m-3 d-1 de DQO no RAFA, e as taxas de aplicação superficial (TAS) no SAC foram de 120, 130 e 464 kg ha-1d-1 de NTK e 13; 51 e 240 kg ha-1 d-1de PT e de 850; 656 e 6.335 kg ha-1 d-1 de DQO. As eficiências de remoção de NTK e PT no sistema como um todo foram de, aproximadamente, 35%, não havendo diferença significativa entre as fases. Porém, em termos de COV removida, houve maior remoção com o aumento da carga aplicada. As características apresentadas pelo efluente do sistema nas diferentes fases não alcançaram os padrões ambientais para lançamento em cursos de água no Estado de Minas Gerais, dentre as variáveis avaliadas, mas seu potencial nutricional deve ser utilizado para produção agrícola.