978 resultados para electrochemical sensor


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Herein, homogenously partial sulfonation of polystyrene (PSP) was performed. An effective electrochemiluminescence (ECL) sensor based on PSP with carbon nanotube (CNTs) composite film was developed. Cyclic voltammetry and electrochemical impendence spectroscopy were applied to characterize this composite film. The PSP was used as an immobilization matrix to entrap the ECL reagent Ru(bpy)(3)(2+) due to the electrostatic interactions between sulfonic acid groups and Ru(bpy)(3)(2+) cations. The introduction of CNTs into PSP acted not only as a conducting pathway to accelerate the electron transfer but also as a proper matrix to immobilize Ru(bpy)(3)(2+) on the electrode by hydrophobic interaction. Furthermore, the results indicated the ECL intensity produced at this composite film was over 3-fold compared with that of the pure PSP film due to the electrocatalytic activity of the CNTs. Such a sensor was verified by the sensitive determinations of 2-(dibutylamino)ethanol and tripropylamine.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Bioactive ultrathin films with the incorporation of amino-terminated G4 PAMAM dendrimers have been prepared via layer-by-layer self-assembly methods on a gold electrode and used for the DNA hybridization analysis. Surface plasmon resonance (SPR), X-ray photoelectron spectroscopy (XPS), and electrochemical impedance spectroscopy (EIS) are used to characterize the successful construction of the multicomponent film on the gold substrate. The dendrimer-modified surfaces improve the immobilization capacity of the probe DNA greatly, compared to the AET (2aminoethanethiol) SAM sensor surfaces without dendrimer molecules. DNA hybridization analysis is monitored by EIS. The dendrimer-based electrochemical impedance DNA biosensor shows high sensitivity and selectivity for DNA hybridization assay. The multicomponent films also display a high stability during repeated regeneration and hybridization cycles.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We report a sensitive electrochemical aptasensor for adenosine based on electrochemical impedance spectroscopy measurement, which gives not only a label-free but also a reusable platform to make the detection of small molecules simple and convenient.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this work, we report a simple and effective investigation into adaptive interactions between guanine-rich DNA aptamers and amino acid amides by CE with electrochemical (EC) detection. Argininamide (Arm) and tyrosinamide (Tym) were chosen as model molecules. On a copper electrode, Arm generated a good EC signal in 60 mM NaOH at 0.7 V (vs Ag/ AgCl), while Tym. was detected well on a platinum electrode at 1. 3 V in 20 mM phosphate of pH 7.0. Based on their EC properties, the ligands themselves were used as indicators for the adaptive interactions investigated by CE-EC, making any step of labeling and/or modification of aptamers with indicators exempted. Hydrophilic ionic liquid was used as an additive in running buffer of CE to improve the sensitivity of Arm detection, whereas the additive was not used for Tym. detection due to its negative effect. Two guanine-rich DNA aptamers were used for molecular recognition of Arm and Tym. When the aptamers were incubated with ligands, they bound the model molecules with high affinity and specificity, reflected by obvious decreases in the signals of ligands but no changes in those of the control molecules. However, the ligands were hardly affected by the control ssDNAs after incubation. The results revealed the specific recognition of Arm and Tym. by the aptamers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The hybridization of immobilized oligonucleotides probe strands with solution phase targets is the underlying principle of microarraybased techniques for the analysis of DNA variation. To study the kinetics of DNA/DNA hybridization, target DNA is often prior labeled with markers. A label-free method of electrochemical impedance spectra (EIS) for study the hybridization in process was reported. The Langmuir model was used to determine the association rate constant (K-on), the dissociation rate constant (K-off) and the affinity rate constant (K-A), for perfect matched DNA hybridization. The results show that, EIS is a successful technique possessing high effectivity and sensitivity to study DNA/DNA hybridization kinetics. This work can provide another view on EIS for the studying of DNA/DNA hybridization.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We initially report an electrochemical sensing platform based on molecularly imprinted polymers (MIPs) at functionalized Indium Tin Oxide Electrodes (ITO). In this research, aminopropyl-derivatized organosilane aminopropyltriethoxysilane (APTES), which plays the role of functional monomers for template recognition, was firstly self-assembled on an ITO electrode and then dopamine-imprinted sol was spin-coated on the modified surface. APTES which can interact with template dopamine (DA) through hydrogen bonds brought more binding sites located closely to the surface of the ITO electrode, thus made the prepared sensor more sensitive for DA detection. Potential scanning is presented to extract DA from the modified film, thus DA can rapidly and completely leach out. The affinity and selectivity of the resulting biomimetic sensor were characterized using cyclic voltammetry (CV). It exhibited an increased affinity for DA over that of structurally related molecules, the anodic current for DA oxidation depended on the concentration of DA in the linear range from 2 x 10(-6) M to 0.8 x 10(-3) M with a correlation coefficient of 0.9927.In contrast, DA-templated film prepared under identical conditions on a bare ITO showed obviously lower response toward dopamine in solution.

Relevância:

30.00% 30.00%

Publicador:

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The pH-sensitive property of the single-wall carbon nanotube modified electrode based oil the electroactive group on the single-wall carbon nanotube was explored by differential pulse voltammetry technique. In pH range 1-13 investigated in Britton-Robinson (B-R) buffer, the anodic peak shifted negatively along with the increase of pH exhibiting a reversible Nernstian response. Experiments were carried out to investigate the response of the single-wall carbon nanotube (SWNT) modified electrode to analytes associated with pH change. The response behavior of the modified electrode to ammonia was studied as an example. The potential response could reach equilibrium within 5 min. The modified electrode had good operational stability. Voltammetric urease and acetylcholinesterase biosensors were constructed by immobilizing the enzymes with sol-get hybrid material. The maximum potential shift could reach 0.130 and 0.220V for urea and acetylthiocholine, respectively. The methods for preparing sensor and biosensor were simple and reproducible and the range of analytes could be extended to substrates of other hydrolyases and esterases.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Colloidal Au particles have been deposited on the gold electrode through layer-by-layer self-assembly using cysteamine as cross-linkers. Self-assembly of colloidal Au on the gold electrode resulted in ail easier attachment of antibody, larger electrode surface and ideal electrode behavior. The redox reactions of [Fe(CN)(6)]-/[Fe(CN)(6)](3-) on the gold surface were blocked due to antibody immobilization, which were investigated by cyclic voltammetry and impedance spectroscopy. The interaction of antigen with grafted antibody recognition layers was carried out by soaking the modified electrode into a phosphate buffer at pH 7.0 with various concentrations of antigen at 37degreesC for 30 min. Further, an amplification strategy to use biotin conjugated antibody was introduced for improving the sensitivity of impedance measurements. Thus, the sensor based oil this immobilization method exhibits a large linear dynamic range, from 5 - 400 mug/L for detection of Human IgG. The detection limit is about 0.5 mug/L.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The target DNA was immobilized successfully on gold colloid particles associated with a cysteamine monolayer on gold electrode surface. Self-assembly of colloidal An onto a cysteamine modified gold electrode can enlarge the electrode surface area and enhance greatly the amount of immobilized single stranded DNA (ssDNA). The electrontransfer processes of [Fe(CN)(6)](4)-/[Fe(CN)(6)](3-) on the gold surface were blocked due to the procedures of the target DNA immobilization, which was investigated by impedance spectroscopy. Then single stranded target DNA immobilized on the gold electrode hybridized with the silver nanoparticle-oligonucleotide DNA probe, followed by the release of the silver metal atoms anchored on the hybrids by oxidative metal dissolution, and the indirect determination of the released solubilized Ag-1 ions by anodic stripping voltammetry (ASV) at a carbon fiber microelectrode. The results show that this method has good correlation for DNA detection in the range of 10-800 pmol/1 and allows the detection level as low as 5 pmol/1 of the target oligonucleotides.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Here, we describe a new method to study the biointeraction between Escherichia coli and mannose by using supramolecular assemblies composed of polydiacetylene supported on the self-assembled monolayer of octadecanethiol on a gold electrode. These prepared bilayer materials simply are an excellent protosystem to study a range of important sensor-related issues. The experimental results from UV-vis spectroscopy, resonance Raman spectroscopy, and electrochemistry confirm that the specific interactions between E. coli and mannose can cause conformational changes of the polydiacetylene backbone rather than simple nonspecific adsorption. Moreover, the direct electrochemical detection by polydiacetylene supramolecular assemblies not only opens a new path for the use of these membranes in the area of biosensor development but also offers new possibilities for diagnostic applications and screening for binding ligands.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This review presents recent developments of electrochemical biosensors in extreme working environments. After a brief introduction to the electrochemical biosensor, the applications of biocatalytic biosensors and bioaffinity biosensors in harsh working conditions, in organic solvent, in gas-phase, in vivo measurement and in toxic environments, are discussed by means of several examples. Methods for improving the stability and extending the biosensor application scope are suggested, and new trends about biosensor development are also discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The conductive alpha (2)-K7P2W17VO62/graphite/organoceramic composite was prepared by dispersing alpha (2)-K7P2W17VO62 and graphite powder in a propyltrimethoxysilane-based sol-gel solution; it was used as the electrode material for an amperometric hydrogen peroxide sensor. The modified electrode had a homogeneous mirror-like surface and showed well defined cyclic voltammograms. Square-wave voltammetry was employed to study the pH-dependent electrochemical behavior of c alpha (2)-K7P2W17VO62 doped in the graphite organoceramic matrix, and the experiment showed that both protons and sodium cations participated in the odor process. A hydrodynamic voltammetric experiment was performed to characterize the electrode as an amperometric sensor for the determination of hydrogen peroxide. The sensor can be renewed easily in a repeatable manner by a mechanical polishing step and has a long operational lifetime. (C) 2000 Elsevier Science B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The preparation and characteristics of bilayer lipid membranes including conventional bilayer membrane, solid supported self-assembling bilayer lipid membrane, solid supported hybrid bilayer membrane are described in this paper, The applications of bilayer lipid membranes in electrochemical biosensors are reviewed and the future development of electrochemical biosensor based on bilayer lipid membranes is discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A new type of silicomolybdate-methylsilicate-graphite composite material was prepared by the sol-gel technique and used for the fabrication of an amperometric nitrite sensor. The silicomolybdic anion acts as a catalyst, the graphite powder ensures conductivity by percolation, the silicate provides a rigid porous backbone and the methyl groups endow hydrophobicity and thus limit the wetting section of the modified electrode. Cyclic voltammetry, square-wave voltammetry and chronoamperometry were employed to characterize the sensor. The amperometric nitrite sensor exhibited a series of good properties: high sensitivity (1.771 mu A mmol(-1) dm(3)), a short response time (7 s), remarkable long-term stability and especially reproducibility of surface renewal in the event of electrode surface fouling.