947 resultados para dynamic parameters identification


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Growth of complexity and functional importance of integrated navigation systems (INS) leads to high losses at the equipment refusals. The paper is devoted to the INS diagnosis system development, allowing identifying the cause of malfunction. The proposed solutions permit taking into account any changes in sensors dynamic and accuracy characteristics by means of the appropriate error models coefficients. Under actual conditions of INS operation, the determination of current values of the sensor models and estimation filter parameters rely on identification procedures. The results of full-scale experiments are given, which corroborate the expediency of INS error models parametric identification in bench test process.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Structural monitoring and dynamic identification of the manmade and natural hazard objects is under consideration. Math model of testing object by set of weak stationary dynamic actions is offered. The response of structures to the set of signals is under processing for getting important information about object condition in high frequency band. Making decision procedure into active monitoring system is discussed as well. As an example the monitoring outcome of pillar-type monument is given.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Fermentation processes as objects of modelling and high-quality control are characterized with interdependence and time-varying of process variables that lead to non-linear models with a very complex structure. This is why the conventional optimization methods cannot lead to a satisfied solution. As an alternative, genetic algorithms, like the stochastic global optimization method, can be applied to overcome these limitations. The application of genetic algorithms is a precondition for robustness and reaching of a global minimum that makes them eligible and more workable for parameter identification of fermentation models. Different types of genetic algorithms, namely simple, modified and multi-population ones, have been applied and compared for estimation of nonlinear dynamic model parameters of fed-batch cultivation of S. cerevisiae.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The impact of whole body vibrations (vibration stimulus mechanically transferred to the body) on muscular activity and neuromuscular response has been widely studied but without standard protocol and by using different kinds of exercises and parameters. In this study, we investigated how whole body vibration treatments affect electromyographic signal of rectus femoris during static and dynamic squat exercises. The aim was the identification of squat exercise characteristics useful to maximize neuromuscular activation and hence progress in training efficacy. Fourteen healthy volunteers performed both static and dynamic squat exercises without and with vibration treatments. Surface electromyographic signals of rectus femoris were recorded during the whole exercise and processed to reduce artifacts and to extract root mean square values. Paired t-test results demonstrated an increase of the root mean square values (p<0.05) in both static and dynamic squat exercises with vibrations respectively of 63% and 108%. For each exercise, subjects gave a rating of the perceived exertion according to the Borg's scale but there were no significant changes in the perceived exertion rate between exercises with and without vibration. Finally, results from analysis of electromyographic signals identified the static squat with WBV treatment as the exercise with higher neuromuscular system response. © 2012 IEEE.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Миглена Г. Кирилова-Донева - Едномерен експеримент на релаксация беше извършен с 14 образци от човешка пъпна фасция. Механичното поведение на фасцията по време на релаксация беше моделирано прилагайки нелинейната теория на Максвел-Гуревич-Рабинович. Параметрите на модела за изследваните образци бяха определени и стойностите им бяха сравнени в зависимост от посоката на натоварване на образците по време на експеримента. Установено бе, че стойностите на началния вискозитет ∗η0 и на параметъра ∗m, който се влияе от скоростта на деформация на материала се изменят в много широки граници не само за образци от различни донори, но и за образци от един донор. В резултат от прилагането на модела бе изчислено изменението на вискозитета и вискозната деформация на материала по време на релаксацията. Бе показано, че изменението на вискозитета и вискозната деформация зависи от посоката на натоварване на образците.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This research explores Bayesian updating as a tool for estimating parameters probabilistically by dynamic analysis of data sequences. Two distinct Bayesian updating methodologies are assessed. The first approach focuses on Bayesian updating of failure rates for primary events in fault trees. A Poisson Exponentially Moving Average (PEWMA) model is implemnented to carry out Bayesian updating of failure rates for individual primary events in the fault tree. To provide a basis for testing of the PEWMA model, a fault tree is developed based on the Texas City Refinery incident which occurred in 2005. A qualitative fault tree analysis is then carried out to obtain a logical expression for the top event. A dynamic Fault Tree analysis is carried out by evaluating the top event probability at each Bayesian updating step by Monte Carlo sampling from posterior failure rate distributions. It is demonstrated that PEWMA modeling is advantageous over conventional conjugate Poisson-Gamma updating techniques when failure data is collected over long time spans. The second approach focuses on Bayesian updating of parameters in non-linear forward models. Specifically, the technique is applied to the hydrocarbon material balance equation. In order to test the accuracy of the implemented Bayesian updating models, a synthetic data set is developed using the Eclipse reservoir simulator. Both structured grid and MCMC sampling based solution techniques are implemented and are shown to model the synthetic data set with good accuracy. Furthermore, a graphical analysis shows that the implemented MCMC model displays good convergence properties. A case study demonstrates that Likelihood variance affects the rate at which the posterior assimilates information from the measured data sequence. Error in the measured data significantly affects the accuracy of the posterior parameter distributions. Increasing the likelihood variance mitigates random measurement errors, but casuses the overall variance of the posterior to increase. Bayesian updating is shown to be advantageous over deterministic regression techniques as it allows for incorporation of prior belief and full modeling uncertainty over the parameter ranges. As such, the Bayesian approach to estimation of parameters in the material balance equation shows utility for incorporation into reservoir engineering workflows.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In the recent years, vibration-based structural damage identification has been subject of significant research in structural engineering. The basic idea of vibration-based methods is that damage induces mechanical properties changes that cause anomalies in the dynamic response of the structure, which measures allow to localize damage and its extension. Vibration measured data, such as frequencies and mode shapes, can be used in the Finite Element Model Updating in order to adjust structural parameters sensible at damage (e.g. Young’s Modulus). The novel aspect of this thesis is the introduction into the objective function of accurate measures of strains mode shapes, evaluated through FBG sensors. After a review of the relevant literature, the case of study, i.e. an irregular prestressed concrete beam destined for roofing of industrial structures, will be presented. The mathematical model was built through FE models, studying static and dynamic behaviour of the element. Another analytical model was developed, based on the ‘Ritz method’, in order to investigate the possible interaction between the RC beam and the steel supporting table used for testing. Experimental data, recorded through the contemporary use of different measurement techniques (optical fibers, accelerometers, LVDTs) were compared whit theoretical data, allowing to detect the best model, for which have been outlined the settings for the updating procedure.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Crystallization is employed in different industrial processes. The method and operation can differ depending on the nature of the substances involved. The aim of this study is to examine the effect of various operating conditions on the crystal properties in a chemical engineering design window with a focus on ultrasound assisted cooling crystallization. Batch to batch variations, minimal manufacturing steps and faster production times are factors which continuous crystallization seeks to resolve. Continuous processes scale-up is considered straightforward compared to batch processes owing to increase of processing time in the specific reactor. In cooling crystallization process, ultrasound can be used to control the crystal properties. Different model compounds were used to define the suitable process parameters for the modular crystallizer using equal operating conditions in each module. A final temperature of 20oC was employed in all experiments while the operating conditions differed. The studied process parameters and configuration of the crystallizer were manipulated to achieve a continuous operation without crystal clogging along the crystallization path. The results from the continuous experiment were compared with the batch crystallization results and analysed using the Malvern Morphologi G3 instrument to determine the crystal morphology and CSD. The modular crystallizer was operated successfully with three different residence times. At optimal process conditions, a longer residence time gives smaller crystals and narrower CSD. Based on the findings, at a constant initial solution concentration, the residence time had clear influence on crystal properties. The equal supersaturation criterion in each module offered better results compared to other cooling profiles. The combination of continuous crystallization and ultrasound has large potential to overcome clogging, obtain reproducible and narrow CSD, specific crystal morphologies and uniform particle sizes, and exclusion of milling stages in comparison to batch processes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A susceptible-infective-recovered (SIR) epidemiological model based on probabilistic cellular automaton (PCA) is employed for simulating the temporal evolution of the registered cases of chickenpox in Arizona, USA, between 1994 and 2004. At each time step, every individual is in one of the states S, I, or R. The parameters of this model are the probabilities of each individual (each cell forming the PCA lattice ) passing from a state to another state. Here, the values of these probabilities are identified by using a genetic algorithm. If nonrealistic values are allowed to the parameters, the predictions present better agreement with the historical series than if they are forced to present realistic values. A discussion about how the size of the PCA lattice affects the quality of the model predictions is presented. Copyright (C) 2009 L. H. A. Monteiro et al.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: Detailed analysis of the dynamic interactions among biological, environmental, social, and economic factors that favour the spread of certain diseases is extremely useful for designing effective control strategies. Diseases like tuberculosis that kills somebody every 15 seconds in the world, require methods that take into account the disease dynamics to design truly efficient control and surveillance strategies. The usual and well established statistical approaches provide insights into the cause-effect relationships that favour disease transmission but they only estimate risk areas, spatial or temporal trends. Here we introduce a novel approach that allows figuring out the dynamical behaviour of the disease spreading. This information can subsequently be used to validate mathematical models of the dissemination process from which the underlying mechanisms that are responsible for this spreading could be inferred. Methodology/Principal Findings: The method presented here is based on the analysis of the spread of tuberculosis in a Brazilian endemic city during five consecutive years. The detailed analysis of the spatio-temporal correlation of the yearly geo-referenced data, using different characteristic times of the disease evolution, allowed us to trace the temporal path of the aetiological agent, to locate the sources of infection, and to characterize the dynamics of disease spreading. Consequently, the method also allowed for the identification of socio-economic factors that influence the process. Conclusions/Significance: The information obtained can contribute to more effective budget allocation, drug distribution and recruitment of human skilled resources, as well as guiding the design of vaccination programs. We propose that this novel strategy can also be applied to the evaluation of other diseases as well as other social processes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: There are several studies in the literature depicting measurement error in gene expression data and also, several others about regulatory network models. However, only a little fraction describes a combination of measurement error in mathematical regulatory networks and shows how to identify these networks under different rates of noise. Results: This article investigates the effects of measurement error on the estimation of the parameters in regulatory networks. Simulation studies indicate that, in both time series (dependent) and non-time series (independent) data, the measurement error strongly affects the estimated parameters of the regulatory network models, biasing them as predicted by the theory. Moreover, when testing the parameters of the regulatory network models, p-values computed by ignoring the measurement error are not reliable, since the rate of false positives are not controlled under the null hypothesis. In order to overcome these problems, we present an improved version of the Ordinary Least Square estimator in independent (regression models) and dependent (autoregressive models) data when the variables are subject to noises. Moreover, measurement error estimation procedures for microarrays are also described. Simulation results also show that both corrected methods perform better than the standard ones (i.e., ignoring measurement error). The proposed methodologies are illustrated using microarray data from lung cancer patients and mouse liver time series data. Conclusions: Measurement error dangerously affects the identification of regulatory network models, thus, they must be reduced or taken into account in order to avoid erroneous conclusions. This could be one of the reasons for high biological false positive rates identified in actual regulatory network models.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper proposes a three-stage offline approach to detect, identify, and correct series and shunt branch parameter errors. In Stage 1 the branches suspected of having parameter errors are identified through an Identification Index (II). The II of a branch is the ratio between the number of measurements adjacent to that branch, whose normalized residuals are higher than a specified threshold value, and the total number of measurements adjacent to that branch. Using several measurement snapshots, in Stage 2 the suspicious parameters are estimated, in a simultaneous multiple-state-and-parameter estimation, via an augmented state and parameter estimator which increases the V - theta state vector for the inclusion of suspicious parameters. Stage 3 enables the validation of the estimation obtained in Stage 2, and is performed via a conventional weighted least squares estimator. Several simulation results (with IEEE bus systems) have demonstrated the reliability of the proposed approach to deal with single and multiple parameter errors in adjacent and non-adjacent branches, as well as in parallel transmission lines with series compensation. Finally the proposed approach is confirmed on tests performed on the Hydro-Quebec TransEnergie network.