998 resultados para differentiation processes


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The so-called endocrine disruptors have been described as compounds which interfere with the estrogen action in their receptors and may exert a crucial role in the development of the reproductive tract and in the brain sexual differentiation. Thus, conducts and/or exposure to these drugs in the perinatal period that apparently do not endanger the neonate may cause side effects. During embrionary development, the gonads, through discharge of a small quantity of reproductive hormones, will guarantee the phenotype of male or female at birth, as well as actuate in specific areas sexual differentiation of the central nervous system. Several experimental models have shown an interference of drugs acting as endocrine disruptors in hypothalamic sexual differentiation. Thus, reproductive function is impaired by exposure to estrogen in the perinatal life of rats and the mechanisms involved in this effect are distinct for males and females. Perinatal exposure to drugs which may be considered endocrine disrupters may induce an incomplete masculinization and defeminization of the central nervous system. Alterations in these processes, if present, generally are perceived only at puberty or adult reproductive life. These later alterations may include anomalies in the process of fertility or in sexual behavior.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A better understanding of the paracrine and autocrine regulatory loops within the cumulus-oocyte complex (COC) is fundamental for the improvement of in vitro maturation (IVM) outcomes in humans and domestic species. This review presents the most important local regulators identified in the COC to date with special attention to those secreted by the oocyte and acting on cumulus cells, as well as their roles in different processes crucial for the successful maturation of the COC. An autocrine regulatory loop mediated by epidermal growth factor-like (EGF-like) peptides in cumulus cells triggers COC maturation. During COC differentiation, oocyte secreted factors (OSFs), particularly members of the transforming growth factor-beta (TGF beta) and fibroblast growth factor (FGF) families, regulate meiotic resumption, cumulus expansion, cumulus metabolism, apoptosis and steroidogenesis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Population genetics theory predicts loss in genetic variability because of drift and inbreeding in isolated plant populations; however, it has been argued that long-distance pollination and seed dispersal may be able to maintain gene flow, even in highly fragmented landscapes. We tested how historical effective population size, historical migration and contemporary landscape structure, such as forest cover, patch isolation and matrix resistance, affect genetic variability and differentiation of seedlings in a tropical palm (Euterpe edulis) in a human-modified rainforest. We sampled 16 sites within five landscapes in the Brazilian Atlantic forest and assessed genetic variability and differentiation using eight microsatellite loci. Using a model selection approach, none of the covariates explained the variation observed in inbreeding coefficients among populations. The variation in genetic diversity among sites was best explained by historical effective population size. Allelic richness was best explained by historical effective population size and matrix resistance, whereas genetic differentiation was explained by matrix resistance. Coalescence analysis revealed high historical migration between sites within landscapes and constant historical population sizes, showing that the genetic differentiation is most likely due to recent changes caused by habitat loss and fragmentation. Overall, recent landscape changes have a greater influence on among-population genetic variation than historical gene flow process. As immediate restoration actions in landscapes with low forest amount, the development of more permeable matrices to allow the movement of pollinators and seed dispersers may be an effective strategy to maintain microevolutionary processes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Abstract Background In honeybees, differential feeding of female larvae promotes the occurrence of two different phenotypes, a queen and a worker, from identical genotypes, through incremental alterations, which affect general growth, and character state alterations that result in the presence or absence of specific structures. Although previous studies revealed a link between incremental alterations and differential expression of physiometabolic genes, the molecular changes accompanying character state alterations remain unknown. Results By using cDNA microarray analyses of >6,000 Apis mellifera ESTs, we found 240 differentially expressed genes (DEGs) between developing queens and workers. Many genes recorded as up-regulated in prospective workers appear to be unique to A. mellifera, suggesting that the workers' developmental pathway involves the participation of novel genes. Workers up-regulate more developmental genes than queens, whereas queens up-regulate a greater proportion of physiometabolic genes, including genes coding for metabolic enzymes and genes whose products are known to regulate the rate of mass-transforming processes and the general growth of the organism (e.g., tor). Many DEGs are likely to be involved in processes favoring the development of caste-biased structures, like brain, legs and ovaries, as well as genes that code for cytoskeleton constituents. Treatment of developing worker larvae with juvenile hormone (JH) revealed 52 JH responsive genes, specifically during the critical period of caste development. Using Gibbs sampling and Expectation Maximization algorithms, we discovered eight overrepresented cis-elements from four gene groups. Graph theory and complex networks concepts were adopted to attain powerful graphical representations of the interrelation between cis-elements and genes and objectively quantify the degree of relationship between these entities. Conclusion We suggest that clusters of functionally related DEGs are co-regulated during caste development in honeybees. This network of interactions is activated by nutrition-driven stimuli in early larval stages. Our data are consistent with the hypothesis that JH is a key component of the developmental determination of queen-like characters. Finally, we propose a conceptual model of caste differentiation in A. mellifera based on gene-regulatory networks.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Purinergic receptors participate, in almost every cell type, in controlling metabolic activities and many physiological functions including signal transmission, proliferation and differentiation. While most of P2Y receptors induce transient elevations of intracellular calcium concentration by activation of intracellular calcium pools and forward these signals as waves which can also be transmitted into neighboring cells, P2X receptors produce calcium spikes which also include activation of voltage-operating calcium channels. P2Y and P2X receptors induce calcium transients that activate transcription factors responsible for the progress of differentiation through mediators including calmodulin and calcineurin. Expression of P2X2 as well as of P2X7 receptors increases in differentiating neurons and glial cells, respectively. Gene expression silencing assays indicate that these receptors are important for the progress of differentiation and neuronal or glial fate determination. Metabotropic receptors, mostly P2Y1 and P2Y2 subtypes, act on embryonic cells or cells at the neural progenitor stage by inducing proliferation as well as by regulation of neural differentiation through NFAT translocation. The scope of this review is to discuss the roles of purinergic receptor-induced calcium spike and wave activity and its codification in neurodevelopmental and neurodifferentiation processes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Hepatocellular carcinoma (HCC) is the third highest cause of cancer death worldwide. In general, the disease is diagnosed at an advanced stage when potentially curative therapies are no longer feasible. For this reason, it is very important to develop new therapeutic approaches. Retinoic acid (RA) is a natural derivative of vitamin A that regulates important biological processes including cell proliferation and differentiation. In vitro studies have shown that RA is effective in inhibiting growth of HCC cells; however, responsiveness to treatment varies among different HCC cell lines. The objective of the present study was to determine if the combined use of RA (0.1 µM) and cAMP (1 mM), an important second messenger, improves the responsiveness of HCC cells to RA treatment. We evaluated the proliferative behavior of an HCC cell line (HTC) and the expression profile of genes related to cancer signaling pathway (ERK and GSK-3β) and liver differentiation (E-cadherin, connexin 26 (Cx26), and Cx32). RA and cAMP were effective in inhibiting the proliferation of HTC cells independently of combined use. However, when a mixture of RA and cAMP was used, the signals concerning the degree of cell differentiation were increased. As demonstrated by Western blot, the treatment increased E-cadherin, Cx26, Cx32 and Ser9-GSK-3β (inactive form) expression while the expression of Cx43, Tyr216-GSK-3β (active form) and phosphorylated ERK decreased. Furthermore, telomerase activity was inhibited along treatment. Taken together, the results showed that the combined use of RA and cAMP is more effective in inducing differentiation of HTC cells.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Abstract Background Bone fractures and loss represent significant costs for the public health system and often affect the patients quality of life, therefore, understanding the molecular basis for bone regeneration is essential. Cytokines, such as IL-6, IL-10 and TNFα, secreted by inflammatory cells at the lesion site, at the very beginning of the repair process, act as chemotactic factors for mesenchymal stem cells, which proliferate and differentiate into osteoblasts through the autocrine and paracrine action of bone morphogenetic proteins (BMPs), mainly BMP-2. Although it is known that BMP-2 binds to ActRI/BMPR and activates the SMAD 1/5/8 downstream effectors, little is known about the intracellular mechanisms participating in osteoblastic differentiation. We assessed differences in the phosphorylation status of different cellular proteins upon BMP-2 osteogenic induction of isolated murine skin mesenchymal stem cells using Triplex Stable Isotope Dimethyl Labeling coupled with LC/MS. Results From 150 μg of starting material, 2,264 proteins were identified and quantified at five different time points, 235 of which are differentially phosphorylated. Kinase motif analysis showed that several substrates display phosphorylation sites for Casein Kinase, p38, CDK and JNK. Gene ontology analysis showed an increase in biological processes related with signaling and differentiation at early time points after BMP2 induction. Moreover, proteins involved in cytoskeleton rearrangement, Wnt and Ras pathways were found to be differentially phosphorylated during all timepoints studied. Conclusions Taken together, these data, allow new insights on the intracellular substrates which are phosphorylated early on during differentiation to BMP2-driven osteoblastic differentiation of skin-derived mesenchymal stem cells.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The studies in the present thesis focus on post-decision processes using the theoretical framework of Differentiation and Consolidation Theory. This thesis consists of three studies. In all these studies, pre-decision evaluations are compared with post-decision evaluations in order to explore differences in evaluations of decision alternatives before and after a decision. The main aim of the studies was to describe and gain a clearer and better understanding of how people re-evaluate information, following a decision for which they have experienced the decision and outcome. The studies examine how the attractiveness evaluations of important attributes are restructured from the pre-decision to the post-decision phase; particularly restructuring processes of value conflicts. Value conflict attributes are those in which information speaks against the chosen alternative in a decision. The first study investigates an important real-life decision and illustrates different post-decision (consolidation) processes following the decision. The second study tests whether decisions with value conflicts follow the same consolidation (post-decision restructuring) processes when the conflict is controlled experimentally, as in earlier studies of less controlled real-life decisions. The third study investigates consolidation and value conflicts in decisions in which the consequences are controlled and of different magnitudes. The studies in the present thesis have shown how attractiveness restructuring of attributes in conflict occurs in the post-decision phase. Results from the three studies indicated that attractiveness restructuring of attributes in conflict was stronger for important real-life decisions (Study 1) and in situations in which real consequences followed a decision (Study 3) than in more controlled, hypothetical decision situations (Study 2). Finally, some proposals for future research are suggested, including studies of the effects of outcomes and consequences on consolidation of prior decisions and how a decision maker’s involvement affects his or her pre- and post-decision processes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The nervous system is the most complex organ in animals and the ordered interconnection of neurons is an essential prerequisite for normal behaviour. Neuronal connectivity requires controlled neuronal growth and differentiation. Neuronal growth essentially depends on the actin and microtubule cytoskeleton, and it has become increasingly clear, that crosslinking of these cytoskeletal fractions is a crucial regulatory process. The Drosophila Spectraplakin family member Short stop (Shot) is such a crosslinker and is crucial for several aspects of neuronal growth. Shot comprises various domains: An actin binding domain, a plakin-like domain, a rod domain, calcium responsive EF-hand motifs, a microtubule binding Gas2 domain, a GSR motif and a C-terminal EB1aff domain. Amongst other phenotypes, shot mutant animals exhibit severely reduced dendrites and neuromuscular junctions, the subcellular compartmentalisation of the transmembrane protein Fasciclin2 is affected, but it is also crucially required in other tissues, for example for the integrity of tendon cells, specialised epidermal cells which anchor muscles to the body wall. Despite these striking phenotypes, Shot function is little understood, and especially we do not understand how it can carry out functions as diverse as those described above. To bridge this gap, I capitalised on the genetic possibilities of the model system Drosophila melanogaster and carried out a structure-function analysis in different neurodevelopmental contexts and in tendon cells. To this end, I used targeted gene expression of existing and newly generated Shot deletion constructs in Drosophila embryos and larvae, analyses of different shot mutant alleles, and transfection of Shot constructs into S2 cells or cultured fibroblasts. My analyses reveal that a part of the Shot C-terminus is not essential in the nervous system but in tendon cells where it stabilises microtubules. The precise molecular mechanism underlying this activity is not yet elucidated but, based on the findings presented here, I have developed three alternative testable hypothesis. Thus, either binding of the microtubule plus-end tracking molecule EB1 through an EB1aff domain, microtubulebundling through a GSR rich motif or a combination of both may explain a context-specific requirement of the Shot C-terminus for tendon cell integrity. Furthermore, I find that the calcium binding EF-hand motif in Shot is exclusively required for a subset of neuronal functions of Shot but not in the epidermal tendon cells. These findings pave the way for complementary studies studying the impact of [Ca2+] on Shot function. Besides these differential requirements of Shot domains I find, that most Shot domains are required in the nervous system and tendon cells alike. Thus the microtubule Gas2 domain shows no context specific requirements and is equally essential in all analysed cellular contexts. Furthermore, I could demonstrate a partial requirement of the large spectrin-repeat rod domain of Shot in neuronal and epidermal contexts. I demonstrate that this domain is partially required in processes involving growth and/or tissue stability but dispensable for cellular processes where no mechanical stress resistance is required. In addition, I demonstrate that the CH1 domain a part of the N-terminal actin binding domain of Shot is only partially required for all analysed contexts. Thus, I conclude that Shot domains are functioning different in various cellular environments. In addition my study lays the base for future projects, such as the elucidation of Shot function in growth cones. Given the high degree of conservation between Shot and its mammalian orthologues MACF1/ACF7 and BPAG1, I believe that the findings presented in this study will contribute to the general understanding of spectraplakins across species borders.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ocean Island Basalts (OIB) provide important information on the chemical and physical characteristics of their mantle sources. However, the geochemical composition of a generated magma is significantly affected by partial melting and/or subsequent fractional crystallization processes. In addition, the isotopic composition of an ascending magma may be modified during transport through the oceanic crust. The influence of these different processes on the chemical and isotopic composition of OIB from two different localities, Hawaii and Tubuai in the Pacific Ocean, are investigated here. In a first chapter, the Os-isotope variations in suites of lavas from Kohala Volcano, Hawaii, are examined to constrain the role of melt/crust interactions on the evolution of these lavas. As 187Os/188Os sensitivity to any radiogenic contaminant strongly depend on the Os content in the melt, Os and other PGE variations are investigated first. This study reveals that Os and other PGE behavior change during the Hawaiian magma differentiation. While PGE concentrations are relatively constant in lavas with relatively primitive compositions, all PGE contents strongly decrease in the melt as it evolved through ~ 8% MgO. This likely reflects the sulfur saturation of the Hawaiian magma and the onset of sulfide fractionation at around 8% MgO. Kohala tholeiites with more than 8% MgO and rich in Os have homogeneous 187Os/188Os values likely to represent the mantle signature of Kohala lavas. However, Os isotopic ratios become more radiogenic with decreasing MgO and Os contents in the lavas, which reflects assimilation of local crust material during fractional crystallization processes. Less than 8% upper oceanic crust assimilation could have produced the most radiogenic Os-isotope ratios recorded in the shield lavas. However, these small amounts of upper crust assimilation have only negligible effects on Sr and Nd isotopic ratios and therefore, are not responsible for the Sr and Nd isotopic heterogeneities observed in Kohala lavas. In a second chapter, fractional crystallization and partial melting processes are constrained using major and trace element variations in the same suites of lavas from Kohala Volcano, Hawaii. This inverse modeling approach allows the estimation of most of the trace element composition of the Hawaiian mantle source. The calculated initial trace element pattern shows slight depletion of the concentrations from LREE to the most incompatible elements, which indicates that the incompatible element enrichments described by the Hawaiian melt patterns are entirely produced by partial melting processes. The “Kea trend” signature of lavas from Kohala Volcano is also confirmed, with Kohala lavas having lower Sr/Nd and La/Th ratios than lavas from Mauna Loa Volcano. Finally, the magmatic evolution of Tubuai Island is investigated in a last chapter using the trace element and Sr, Nd, Hf isotopic variations in mafic lava suites. The Sr, Nd and Hf isotopic data are homogeneous and typical for the HIMU-type OIB and confirms the cogenetic nature of the different mafic lavas from Tubuai Island. The trace element patterns show progressive enrichment of incompatible trace elements with increasing alkali content in the lavas, which reflect progressive decrease in the degree of partial melting towards the later volcanic events. In addition, this enrichment of incompatible trace elements is associated with relative depletion of Rb, Ba, K, Nb, Ta and Ti in the lavas, which require the presence of small amount of residual phlogopite and of a Ti-bearing phase (ilmenite or rutile) during formation of the younger analcitic and nephelinitic magmas.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

SUMOylation is a highly dynamic and reversible posttranslational protein modification closely related to ubiquitination. SUMOylation regulates a vast array of different cellular functions, such as cell cycle, nuclear transport, DNA damage response, proliferation and transcriptional activation. Several groups have shown in in vitro studies how important SUMOylation is for early B cell development and survival as well as for later plasma cell differentiation. This thesis focuses on the deSUMOylation protease SENP1 and its in vivo effects on B cell development and differentiation. For this a conditional SENP1 knockout mouse model was crossed to the CD19-Cre mouse strain to generate a B cell specific SENP1 knockout mouse.rnIn our conditional SENP1ff CD19-Cre mouse model we observed normal numbers of all B cell subsets in the bone marrow. However in the spleen we observed an impairment of B cell survival, based on a 50% reduction of the follicular B cell compartment, whereas the marginal zone B cell compartment was unchanged. T cell numbers were comparable to control mice. rnFurther, impairments of B cell survival in SENP1ff CD19-Cre mice were analysed after in vivo blocking of IL7R signalling. The αIL7R treatment in mature mice blocked new B cell formation in the bone marrow and increased apoptosis rates could be observed in splenic SENP1 KO B cells. Additionally, a higher turnover rate of B cells was measured by in vivo BrdU incorporation.rnSince it is known that the majority of transcription factors that are important for the maintenance of the germinal centre reaction or for induction of plasma cell development are SUMOylated, the question arose, how defective deSUMOylation will manifest itself in these processes. The majority of in vitro cultured splenic B cells, stimulated to undergo class switch recombination and plasma cell differentiation underwent activation induced cell death. However, the surviving cells increasingly differentiated into IgM expressing plasma cells. Class switch recombination to IgG1 was reduced. These observations stood in line with observation made in in vivo sheep red blood cell immunization experiments, which showed increased amounts of germinal centres and germinal centre B cells, as well as increased amounts of plasma cells differentiation in combination with decreased class switch to IgG1.rnThese results lead to the conclusion that SENP1 KO B cells increasingly undergo apoptosis, however, B cells that survive SENP1 deficiency are more prone to undergo plasma cell differentiation. Further, the precursors of these plasma cells either are not as capable of undergoing class switch recombination or they do switch to IgG1 and succumb to activation induced cell death. One possible explanation for both scenarios could be a defective DNA damage response mechanisms during class switch recombination, caused by impaired deSUMOylation. rn

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Bedouin of South Sinai have been significantly affected by the politics of external powers for a long time. However, never had the interest of external powers in Sinai been so strong as since the Israeli-Egyptian wars in the second half of the 20th century when Bedouin interests started to collide with Egypt’s plans for a development of luxury tourism in South Sinai. rnrnThe tourism boom that has started in the 1980s has brought economic and infrastructure development to the Bedouin and tourism has become the most important source of income for the Bedouin. However, while the absolute increase of tourists to Sinai has trickled down to the Bedouin to some extent, the participation of Bedouin in the overall tourism development is under-proportionate. Moreover, the Bedouin have become increasingly dependent on monetary income and consequently from tourism as the only significant source of income while at the same time they have lost much of their land as well as their self-determination.rnrnIn this context, the Bedouin livelihoods have become very vulnerable due to repeated depressions in the tourism industry as well as marginalization. Major marginalization processes the Bedouin are facing are the loss of land, barriers to market entry, especially increasingly strict rules and regulations in the tourism industry, as well as discrimination by the authorities. Social differentiation and Bedouin preferences are identified as further factors in Bedouin marginalization.rnrnThe strategies Bedouin have developed in response to all these problems are coping strategies, which try to deal with the present problem at the individual level. Basically no strategies have been developed at the collective level that would aim to actively shape the Bedouin’s present and future. Collective action has been hampered by a variety of factors, such as the speed of the developments, the distribution of power or the decay of tribal structures.rnWhile some Bedouin might be able to continue their tourism activities, a large number of informal jobs will not be feasible anymore. The majority of the previously mostly self-employed Bedouin will probably be forced to work as day-laborers who will have lost much of their pride, dignity, sovereignty and freedom. Moreover, with a return to subsistence being impossible for the majority of the Bedouin, it is likely that an increasing number of marginalized Bedouin will turn to illegal income generating activities such as smuggling or drug cultivation. This in turn will lead to further repression and discrimination and could escalate in a serious violent conflict between the Bedouin and the government.rnrnDevelopment plans and projects should address the general lack of civil rights, local participation and protection of minorities in Egypt and promote Bedouin community development and the consideration of Bedouin interests in tourism development.rnrnWether the political upheavals and the resignation of president Mubarak at the beginning of 2011 will have a positive effect on the situation of the Bedouin remains to be seen.rn

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background Levels of differentiation among populations depend both on demographic and selective factors: genetic drift and local adaptation increase population differentiation, which is eroded by gene flow and balancing selection. We describe here the genomic distribution and the properties of genomic regions with unusually high and low levels of population differentiation in humans to assess the influence of selective and neutral processes on human genetic structure. Methods Individual SNPs of the Human Genome Diversity Panel (HGDP) showing significantly high or low levels of population differentiation were detected under a hierarchical-island model (HIM). A Hidden Markov Model allowed us to detect genomic regions or islands of high or low population differentiation. Results Under the HIM, only 1.5% of all SNPs are significant at the 1% level, but their genomic spatial distribution is significantly non-random. We find evidence that local adaptation shaped high-differentiation islands, as they are enriched for non-synonymous SNPs and overlap with previously identified candidate regions for positive selection. Moreover there is a negative relationship between the size of islands and recombination rate, which is stronger for islands overlapping with genes. Gene ontology analysis supports the role of diet as a major selective pressure in those highly differentiated islands. Low-differentiation islands are also enriched for non-synonymous SNPs, and contain an overly high proportion of genes belonging to the 'Oncogenesis' biological process. Conclusions Even though selection seems to be acting in shaping islands of high population differentiation, neutral demographic processes might have promoted the appearance of some genomic islands since i) as much as 20% of islands are in non-genic regions ii) these non-genic islands are on average two times shorter than genic islands, suggesting a more rapid erosion by recombination, and iii) most loci are strongly differentiated between Africans and non-Africans, a result consistent with known human demographic history.