934 resultados para cytotoxic T lymphocytes
Resumo:
One vaccine designed to prevent cancer by preventing a precursor infection is already in common use, and at least one more is in the latter stages of clinical development. These vaccines are part of a new era of cancer immunoprophylaxis. Several further vaccines are in preclinical and clinical development, targeted at preventing cancer precursor infections, and these should add to our ability to prevent this common human disorder. However, vaccines to prevent cancers not triggered by infection are a more remote prospect, for a variety of reasons.
Resumo:
Aims: An important consideration in the design of a tumour vaccine is the ability of tumour-specific cytotoxic T lymphocytes (CTL) to recognise unmanipulated tumour cells in vivo. To determine whether B-CLL might use an escape strategy, the current studies compared B-CLL and normal B cell MHC class I expression. Methods: Flow cytometry, TAP allele PCR and MHC class I PCR were used. Results: While baseline expression of MHC class I did not differ, upregulation of MHC class I expression by B-CLL cells in response to IFN-gamma was reduced. No deletions or mutations of TAP 1 or 2 genes were detected. B-CLL cells upregulated TAP protein expression in response to IFN-gamma. Responsiveness of B-CLL MHC class I mRNA to IFN-gamma was not impaired. Conclusions: The data suggest that MHC class I molecules might be less stable at the cell surface in B-CLL than normal B cells, as a result of the described release of beta(2)m and beta(2)m-free class I heavy chains from the membrane. This relative MHC class I expression defect of B-CLL cells may reduce their susceptibility to CTL lysis in response to immunotherapeutic approaches.
Resumo:
The wide range of currently available treatments for metastatic prostate cancer have demonstrated a modest palliative effect, but none to date has shown an increase in overall survival. The immune system has evolved to protect against infection, however, the modulation of this system represents the possibility of allowing it to identify and destroy cancer cells. The immune system is capable of inciting a powerful immune response against tissues, in the form of transplant rejection, and the potential exists to harness these powers to fight against tumors. Modest clinical responses have been seen in patients with metastatic prostate cancer treated with DC therapies; however, no increase in overall survival has been demonstrated. The current state of DC immunotherapy for prostate cancer is reviewed.
Resumo:
Vaccine-induced CD8 T cells directed to tumourspecific antigens are recognised as important components of protective and therapeutic immunity against tumours. Where tumour antigens have pathogenic potential or where immunogenic epitopes are lost from tumours, development of subunit vaccines consisting of multiple individual epitopes is an attractive alternative to immunising with whole tumour antigen. In the present study we investigate the efficacy of two DNA-based multiepitope('polytope') vaccines containing murine (H-2(b)) and human (HLA-A* 0201)-restricted epitopes of the E7 oncoprotein of human papillomavirus type 16, in eliciting tumour-protective cytotoxic T-lymphocyte (CTL) responses. We show that the first of these polytopes elicited powerful effector CTL responses ( measured by IFN-gamma ELISpot) and long-lived memory CTL responses ( measured by functional CTL assay and tetramers) in immunised mice. The responses could be boosted by immunisation with a recombinant vaccinia virus expressing the polytope. Responses induced by immunisation with polytope DNA alone partially protected against infection with recombinant vaccinia virus expressing the polytope. Complete protection was afforded against challenge with an E7-expressing tumour, and reduced growth of nascent tumours was observed. A second polytope differing in the exact composition and order of CTL epitopes, and lacking an inserted endoplasmic reticulum targeting sequence and T-helper epitope, induced much poorer CTL responses and failed to protect against tumour challenge. These observations indicate the validity of a DNA polytope vaccine approach to human papillomavirus E7 - associated carcinoma, and underscore the importance of design in polytope vaccine construction.
Resumo:
The manipulation of dendritic cells (DCs) ex vivo to present tumor-associated antigens for the activation and expansion of tumor-specific cytotoxic T lymphocytes (CTLs) attempts to exploit these cells’ pivotal role in immunity. However, significant improvements are needed if this approach is to have wider clinical application. We optimized a gene delivery protocol via electroporation for cord blood (CB) CD34+ DCs using in vitro–transcribed (IVT) mRNA. We achieved > 90% transfection of DCs with IVT-enhanced green fluorescent protein mRNA with > 90% viability. Electroporation of IVT-mRNA up-regulated DC costimulatory molecules. DC processing and presentation of mRNA-encoded proteins, as major histocompatibility complex/peptide complexes, was established by CTL assays using transfected DCs as targets. Along with this, we also generated specific antileukemic CTLs using DCs electroporated with total RNA from the Nalm-6 leukemic cell line and an acute lymphocytic leukemia xenograft. This significant improvement in DC transfection represents an important step forward in the development of immunotherapy protocols for the treatment of malignancy.
Resumo:
The hepatitis C virus (HCV) is able to persist as a chronic infection, which can lead to cirrhosis and liver cancer. There is evidence that clearance of HCV is linked to strong responses by CD8 cytotoxic T lymphocytes (CTLs), suggesting that eliciting CTL responses against HCV through an epitope-based vaccine could prove an effective means of immunization. However, HCV genomic plasticity as well as the polymorphisms of HLA I molecules restricting CD8 T-cell responses challenges the selection of epitopes for a widely protective vaccine. Here, we devised an approach to overcome these limitations. From available databases, we first collected a set of 245 HCV-specific CD8 T-cell epitopes, all known to be targeted in the course of a natural infection in humans. After a sequence variability analysis, we next identified 17 highly invariant epitopes. Subsequently, we predicted the epitope HLA I binding profiles that determine their potential presentation and recognition. Finally, using the relevant HLA I-genetic frequencies, we identified various epitope subsets encompassing 6 conserved HCV-specific CTL epitopes each predicted to elicit an effective T-cell response in any individual regardless of their HLA I background. We implemented this epitope selection approach for free public use at the EPISOPT web server. © 2013 Magdalena Molero-Abraham et al.
Resumo:
The protective immune response generated by a commercial monovalent inactivated vaccine against bluetongue virus serotype 1 (BTV1) was studied. Five sheep were vaccinated, boost-vaccinated, and then challenged against BTV1 ALG/2006. RT-PCR did not detect viremia at any time during the experiment. Except a temperature increase observed after the initial and boost vaccinations, no clinical signs or lesions were observed. A specific and protective antibody response checked by ELISA was induced after vaccination and boost vaccination. This specific antibody response was associated with a significant increase in B lymphocytes confirmed by flow cytometry, while significant increases were not observed in T lymphocyte subpopulations (CD4(+), CD8(+), and WC1(+)), CD25(+) regulatory cells, or CD14(+) monocytes. After challenge with BTV1, the antibody response was much higher than during the boost vaccination period, and it was associated with a significant increase in B lymphocytes, CD14(+) monocytes, CD25(+) regulatory cells, and CD8(+) cytotoxic T lymphocytes.
Resumo:
The costimulatory receptors CD28 and cytotoxic T-lymphocyte antigen (CTLA)-4 and their ligands, CD80 and CD86, are expressed on T lymphocytes; however, their functional roles during T cell-T cell interactions are not well known. The consequences of blocking CTLA-4-CD80/CD86 interactions on purified mouse CD4(+) T cells were studied in the context of the strength of signal (SOS). CD4(+) T cells were activated with phorbol 12-myristate 13-acetate (PMA) and different concentrations of a Ca2+ ionophore, Ionomycin (I), or a sarcoplasmic Ca2+ ATPase inhibitor, Thapsigargin (TG). Increasing concentrations of I or TG increased the amount of interleukin (IL)-2, reflecting the conversion of a low to a high SOS. During activation with PMA and low amounts of I, intracellular concentrations of calcium ([Ca2+](i)) were greatly reduced upon CTLA-4-CD80/CD86 blockade. Further experiments demonstrated that CTLA-4-CD80/CD86 interactions reduced cell cycling upon activation with PMA and high amounts of I or TG (high SOS) but the opposite occurred with PMA and low amounts of I or TG (low SOS). These results were confirmed by surface T-cell receptor (TCR)-CD3 signalling using a low SOS, for example soluble anti-CD3, or a high SOS, for example plate-bound anti-CD3. Also, CTLA-4-CD80/CD86 interactions enhanced the generation of reactive oxygen species (ROS). Studies with catalase revealed that H2O2 was required for IL-2 production and cell cycle progression during activation with a low SOS. However, the high amounts of ROS produced during activation with a high SOS reduced cell cycle progression. Taken together, these results indicate that [Ca2+](i) and ROS play important roles in the modulation of T-cell responses by CTLA-4-CD80/CD86 interactions.
Resumo:
The granule exocytosis cytotoxicity pathway is the major molecular mechanism for cytotoxic T lymphocyte (CTL) and natural killer (NK) cytotoxicity, but the question of how these cytotoxic lymphocytes avoid self-destruction after secreting perforin has remained unresolved. We show that CTL and NK cells die within a few hours if they are triggered to degranulate in the presence of nontoxic thiol cathepsin protease inhibitors. The potent activity of the impermeant, highly cathepsin B-specific membrane inhibitors CA074 and NS-196 strongly implicates extracellular cathepsin B. CTL suicide in the presence of cathepsin inhibitors requires the granule exocytosis cytotoxicity pathway, as it is normal with CTLs from gld mice, but does not occur in CTLs from perforin knockout mice. Flow cytometry shows that CTLs express low to undetectable levels of cathepsin B on their surface before degranulation, with a substantial rapid increase after T cell receptor triggering. Surface cathepsin B eluted from live CTL after degranulation by calcium chelation is the single chain processed form of active cathepsin B. Degranulated CTLs are surface biotinylated by the cathepsin B-specific affinity reagent NS-196, which exclusively labels immunoreactive cathepsin B. These experiments support a model in which granule-derived surface cathepsin B provides self-protection for degranulating cytotoxic lymphocytes.
Resumo:
T cell-mediated cytotoxicity against Mycobacterium tuberculosis (MTB)-infected macrophages may be a major mechanism of specific host defense, but little is known about such activities in the lung. Thus, the capacity of alveolar lymphocyte MTB-specific cell lines (AL) and alveolar macrophages (AM) from tuberculin skin test-positive healthy subjects to serve as CTL and target cells, respectively, in response to MTB (H37Ra) or purified protein derivative (PPD) was investigated. Mycobacterial Ag-pulsed AM were targets of blood CTL activity at E:T ratios of > or = 30:1 (51Cr release assay), but were significantly more resistant to cytotoxicity than autologous blood monocytes. PPD- plus IL-2-expanded AL and blood lymphocytes were cytotoxic for autologous mycobacterium-stimulated monocytes at E:T ratios of > or = 10:1. The CTL activity of lymphocytes expanded with PPD was predominantly class II MHC restricted, whereas the CTL activity of lymphocytes expanded with PPD plus IL-2 was both class I and class II MHC restricted. Both CD4+ and CD8+ T cells were enriched in BL and AL expanded with PPD and IL-2, and both subsets had mycobacterium-specific CTL activity. Such novel cytotoxic responses by CD4+ and CD8+ T cells may be a major mechanism of defense against MTB at the site of disease activity.
Resumo:
Maternal tolerance to the semi-allogenic fetus is brought about by several mechanisms in humans Glycodelin A (GdA) secreted by the uterine mucosa and decidua is induced to high levels by progesterone between 12 and 16 weeks of pregnancy The glycoprotein an immunomodulator has been shown to be inhibitory to the survival and functions of almost all the immune cells CD8(+) T cells which predominate the T lymphocyte population in the decidua are relatively less studied We attempted to find out the possible mechanism if any of regulation of the cytolytic function of CD8(+) T cells during pregnancy Alloactivated CD8(+) T cells harbouring specific cytolytic activity against target cells exhibited compromised activity upon treatment with high concentrations of GdA Interestingly unlike the CD4(+) T cells CD8(+) T cells were resistant to GdA-induced apoptosis The inhibition of cytotoxic T lymphocyte activity was brought about by the downregulation of transcription of the cytolytic effector molecules granzyme B and perform and the degranulation of cytolytic vesicles These results suggest a protective role played by GdA during pregnancy by regulating the cytolytic activity of CD8(+) T cells (C) 2010 Elsevier Ltd All rights reserved
Resumo:
AIM: To identify the anti-human immunodeficiency virus type 1 (HIV-1) activities of alpha-momorcharin ( alpha-MMC) from Momordica charantia in acutely and chronically infected lymphocytes. METHODS: The anti-HIV activities of alpha-MMC were examined by 1) the inhibition of syncytia formation induced by HIV-1 III B; 2) reduction of p24 core antigen expression level and decrease in numbers of HIV antigen positive cells in acutely and chronically infected cultures. The cytotoxic effects of alpha-MMC was tested by trypan blue dye exclusion or colorimetric MTT assay. RESULTS: alpha-MMC was found to obviously inhibit HIV-1 III B-inducing C8166 syncytia formation and markedly reduced both expression of p24 core antigen and the numbers of HIV antigen positive cells in acutely but not chronically HTV-1-infected culture. The median effective concentration (EC50) in these assays were 0.016, 0.07, and 0.32 mg.L-1, respectively. CONCLUSION: alpha-MMC is a unique component of momorcharin with anti-HIV activity, and markedly inhibited HIV-1 replication in acutely but not chronically HIV-1-infected T-lymphocytes.
Resumo:
The aim of this study was to estimate the acute effects of low dose C-12(6+) ions or X-ray radiation on human immune function. The human peripheral blood lymphocytes (HPBL) of seven healthy donors were exposed to 0.05 Gy C-12(6+) ions or X-ray radiation and cell responses were measured at 24 h after exposure. The cytotoxic activities of HPBL were determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT); the percentages of T and NK cells subsets were detected by flow cytometry; mRNA expression of interleukin (IL)-2, tumor necrosis factor (TNF)-alpha and interferon (IFN)-gamma were examined by real time quantitative RT-PCR (qRT-PCR); and these cytokines protein levels in supematant of cultured cells were assayed by enzyme-linked immunosorbent assays (ELISA). The results showed that the cytotoxic activity of HPBL, mRNA expression of IL-2, IFN-gamma and TNF-alpha in HPBL and their protein levels in supernatant were significantly increased at 24 h after exposure to 0.05 Gy C-12(6+) ions radiation and the effects were stronger than observed for X-ray exposure. However, there was no significant change in the percentage of T and NK cells subsets of HPBL. These results suggested that 0.05 Gy high linear energy transfer (LET) C-12(6+) radiation was a more effective approach to host immune enhancement than that of low LET X-ray. We conclude that cytokines production might be used as sensitive indicators of acute response to LDL (C) 2009 COSPAR. Published by Elsevier Ltd. All rights reserved.
Resumo:
Monoclonal antibodies of the OKT series were used to identify T lymphocytes (OKT3+) and their inducer (OKT4+) and suppressor-cytotoxic (OKT8+) subsets in the peripheral blood mononuclear cells (PBMC) of 32 healthy old-aged people more than 70 years old (16 men and 16 women) compared to 47 adults (29 men, 18 women) less than 40 years old. The absolute lymphocyte count in the peripheral blood was not significantly influenced by age or sex. Both the proportions and the absolute numbers of T3+ and T4+ cells were significantly lower in aged than in young participants. The proportions but not the absolute counts of OKT8+ cells were higher in the elderly. Most interesting is the influence of sex and these parameters. Old women have normal numbers and proportions of T3+, T4+ and T8+ cells when compared to young women. The latter have a significantly higher proportion of T8+ cells than young adult males. Old men have a striking reduction of both the numbers and proportions of OKT3+ and OKT4+ cells when compared with young men and with women. In addition, old men have an elevated proportion, but a normal absolute number, of OKT8+ cells. The responses of PBMC to phytohaemagglutinin extent (PHA), concanavalin A (Con A) and pokeweed mitogen (PWM) are reduced to the same extent in ageing male and female subjects when compared to young adults. In the older group, the magnitude of the lymphocyte response to PHA and Con A but not to PWM is negatively correlated with the proportions of OKT8+ cells. Surprisingly, these correlations are observed only in old women but not in old men. The latter finding excludes the possibility that the age-associated decline of the lymphocyte response to T cell mitogens is secondary to an imbalance between T4+ and T8+ lymphocytes.