548 resultados para crosslinking


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Organometallic compounds have recently found applications in medicinal chemistry and as diagnostic tools in chemical biology. Naturally occurring biomolecules, viz., cobalamine, NiFe hydrogenase, Acetyl-CoA synthase, etc., also contain metal-carbon bonds. Among organometallic compounds having medicinal importance, (arene)ruthenium complexes, radioactive technetium complexes and ferrocene conjugates are notable ones. Applications of photoactive organometallic complexes or metal complexes conjugated with an organometallic moiety are of recent origin. Photodynamic therapy (PDT) is a promising method to treat cancer cells in presence of light. This review primarily focuses on different aspects of the chemistry of organometallic complexes showing photocytotoxic activities. Half-sandwich tungsten, iron or ruthenium complexes are known to show photonuclease and/or photo-crosslinking activity. Photoinduced organometallic CO releasing molecules also exert photocytotoxic activity. Attempts have been made in this review to highlight the photocytotoxic behavior of various metal complexes when conjugated with a photoactive organometallic moiety, viz., ferrocene.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Superabsorbent polymers (SAPs) based on acrylic acid (AA), sodium acrylate (SA), and acrylamide (AM) were synthesized by inverse suspension polymerization using ethylene glycol dimethacrylate as the crosslinking agent. The equilibrium swelling capacities and the rates of swelling of SAPs varied with the AM content and followed first-order kinetics. The photodegradation of SAPs in their equilibrium swollen state was carried out by monitoring their swelling capacity and the residual weight fraction. The SAPs degraded in two stages, wherein the swelling capacity increased to a maximum and then subsequently decreased. Thermogravimetric analysis of the SAPs indicated that the copolymeric superabsorbents had intermediate thermal stability between the homopolymeric superabsorbents. The activation energies of SAPs with 0, 20, and 100 mol % AM content were determined by Kissinger method and were found to be 299, 248, and 147 kJ mol-1, respectively. The ultrasonic degradation of the superabsorbents was carried out in their equilibrium swollen state, and the change in the viscosity with ultrasonication time was used to quantify the degradation. The ultrasonic degradation of AA/SA superabsorbent was also investigated at various ultrasound intensities. The degradation rate coefficients were found to increase with the intensity of ultrasound. The ultrasonic degradation of AA/SA/AM (20% AM) was also carried out, and degradation rate was found to be more than that of the AA/SA superabsorbent. (C) 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Radical catalyzed thiol-ene reaction has become a useful alternative to the Huisgen-type azide-yne click reaction as it helps expand the variability in reaction conditions as well as the range of clickable entities. In this study, the direct generation of a hyperbranched polyether (HBPE) having decyl units at the periphery and a pendant allyl group on every repeat unit of the polymer backbone is described; the allyl groups serve as a reactive handle for postpolymerization modifications and permits the generation of a variety of internally functionalized HBPEs. In this design, the AB(2) monomer carries two decylbenzyl ether units (B-functionality), an aliphatic OH (A-functionality) and a pendant allyl group within the spacer segment; polymerization of the monomer readily occurs at 150 degrees C via melt transetherification process by continuous removal of 1-decanol under reduced pressure. The resulting HBPE has a hydrophobic periphery due to the presence of numerous decyl chains, while the allyl groups that remain unaffected during the melt polymerization provides an opportunity to install a variety of functional groups within the interior; thiol-ene click reaction with two different thiols, namely 3-mercaptopropionic acid and mercaptosuccinic acid, generated interesting amphiphilic structures. Preliminary field emission scanning electron microscope (FESEM) and Atomic Force Microscopy (AFM) imaging studies reveal the formation of fairly uniform spherical aggregates in water with sizes ranging from 200 to 400 nm; this suggests that these amphiphilic HBPs is able to reconfigure to generate jellyfish-like conformations that subsequently aggregate in an alkaline medium. The internal allyl functional groups were also used to generate intramolecularly core-crosslinked HBPEs, by the use of dithiol crosslinkers; gel permeation chromatography traces provided clear evidence for reduction in the size after crosslinking. In summary, we have developed a simple route to prepare core-clickable HBPEs and have demonstrated the quantitative reaction of the allyl groups present within the interior of the polymers; such HB polymeric systems that carry numerous functional groups within the core could have interesting applications in analyte sequestration and possibly sensing, especially from organic media. (c) 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 4125-4135

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Oxidovanadium(IV) complexes VO(pyphen)Cl-2] (1) and VO(pydppz)Cl-2] (2), where pyphen is 2-(2-pyridyl)-1,10-phenanthroline and pydppz is 3-(pyridin-2-yl)dipyrido3,2-a:2,3-c]phenazine, show remarkable photoinduced DNA crosslinking ability and photocytotoxicity. The complexes are non-electrolytes in DMF, 1:1 electrolytes in 20% aqueous DMF, and 1:2 electrolytes in 20% aqueous DMF upon photoirradiation with visible light of 400-700 nm. The paramagnetic complexes, which have one unpaired electron, show a d-d band near 780 nm in aqueous DMF. The IR data suggest a V=O moiety trans to a V-N bond. Complex VO(pydppz)Cl-2] (2), as a novel photoinducible nuclear ds-DNA crosslinking agent, shows visible-light-induced cytotoxicity in HeLa and MCF-7 cancer cells by an apoptotic pathway, giving IC50 values of 0.87 +/- 0.07 and 1.4 +/- 0.2 M, respectively, while being essentially nontoxic (IC50 > 40 M) in the dark and less toxic in normal MCF-10A cells.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A unique strategy for scavenging free radicals in situ on exposure to gamma irradiation in polyethylene (PE) nanocomposites is presented. Blends of ultra-high molecular weight PE and linear low-density PE (PEB) and their nanocomposites with graphene (GPEB) were prepared by melt mixing to develop materials for biomedical implants. The effect of gamma irradiation on the microstructure and mechanical properties was systematically investigated. The neat blend and the nanocomposite were subjected to gamma-ray irradiation in order to improve the interfacial adhesion between PE and graphene sheets. Structural and thermal characterization revealed that irradiation induced crosslinking and increased the crystallinity of the polymer blend. The presence of graphene further enhanced the crystallinity via crosslinks between the polymer matrix and the filler on irradiation. Graphene was found to scavenge free radicals as confirmed by electron paramagnetic resonance spectroscopy. Irradiation of graphene-containing polymer composites resulted in the largest increase in modulus and hardness compared to either irradiation or addition of graphene to PEB alone. This study provides new insight into the role of graphene in polymer matrices during irradiation and suggests that irradiated graphene-polymer composites could emerge as promising materials for use as articulating surfaces in biomedical implants.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mycobacterium tuberculosis elicits the stringent response under unfavorable growth conditions, such as those encountered by the pathogen inside the host. The hallmark of this response is production of guanosine tetra-and pentaphosphates, collectively termed (p)ppGpp, which have pleiotropic effects on the bacterial physiology. As the stringent response is connected to survival under stress, it is now being targeted for developing inhibitors against bacterial persistence. The Rel enzyme in mycobacteria has two catalytic domains at its N-terminus that are involved in the synthesis and hydrolysis of (p)ppGpp, respectively. However, the function of the C-terminal region of the protein remained unknown. Here, we have identified a binding site for pppGpp in the C-terminal region of Rel. The binding affinity of pppGpp was quantified by isothermal titration calorimetry. The binding site was determined by crosslinking using the nucleotide analog azido-pppGpp, and examining the crosslink product by mass spectrometry. Additionally, mutations in the Rel protein were created to confirm the site of pppGpp binding by isothermal titration calorimetry. These mutants showed increased pppGpp synthesis and reduced hydrolytic activity. We believe that binding of pppGpp to Rel provides a feedback mechanism that allows the protein to detect and adjust the (p)ppGpp level in the cell. Our work suggests that such sites should also be considered while designing inhibitors to target the stringent response.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The screen printed electrochemical glucose sensor is developed suitable for revere iontophoresis (RI) application. Glucose oxidase is immobilized on screen printed sensor using crosslinking method. Electrochemical and material characterization studies are conducted on the developed sensor and the obtained results confirm the suitability of the developed sensor for RI application. The developed sensor is validated by conducting clinical investigations on 10 human subjects through RI. A correlation is established between the blood glucose and extracted glucose, and correlation is found to be 0.73. (C) 2015 The Electrochemical Society. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The lack of an efficient and safe carrier is a major impediment in the field of gene therapy. Although gelatin (GT), a naturally derived polymer, is widely used in drug delivery applications, it is unable to bind DNA efficiently. In this study, a novel polycationic gene carrier was prepared by conjugation of low molecular weight polyethyleneimine (LPEI) with GT through 4-bromonaphthaleic anhydride as a coupling agent to avoid self crosslinking. Self-assembly of LPEI conjugated GT (GT-LPEI) with plasmid DNA (pDNA) yielded nanoparticles with high gene complexation ability to form similar to 250 nm cylindrical nanoparticles with a zeta potential of similar to 27 mV. GT-LPEI showed exceptionally high transfection efficiency (> 90%) in various mammalian cells including primary stem cells with minimal cytotoxicity. The transfection efficiency of GT-LPEI significantly surpassed that of many commercial reagents. The high gene transfection expression was confirmed in vivo. Thus, GT-LPEI is shown to be a promising nonviral carrier for potential use in gene therapy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Introduction Nucleoside diphosphate kinase (NDK), conserved across bacteria to humans, synthesises NTP from NDP and ATP. The eukaryotic homologue, the NDPK, uses ATP to phosphorylate the tubulin-bound GDP to GTP for tubulin polymerisation. The bacterial cytokinetic protein FtsZ, which is the tubulin homologue, also uses GTP for polymerisation. Therefore, we examined whether NDK can interact with FtsZ to convert FtsZ-bound GDP and/or free GDP to GTP to trigger FtsZ polymerisation. Methods Recombinant and native NDK and FtsZ proteins of Mycobacterium smegmatis and Mycobacterium tuberculosis were used as the experimental samples. FtsZ polymersation was monitored using 90 degrees light scattering and FtsZ polymer pelleting assays. The gamma 32P-GTP synthesised by NDK from GDP and gamma 32P-ATP was detected using thin layer chromatography and quantitated using phosphorimager. The FtsZ bound P-32-GTP was quantitated using phosphorimager, after UV-crosslinking, followed by SDS-PAGE. The NDK-FtsZ interaction was determined using Ni2+-NTA-pulldown assay and co-immunoprecipitation of the recombinant and native proteins in vitro and ex vivo, respectively. Results NDK triggered instantaneous polymerisation of GDP-precharged recombinant FtsZ in the presence of ATP, similar to the polymerisation of recombinant FtsZ (not GDP-precharged) upon the direct addition of GTP. Similarly, NDK triggered polymerisation of recombinant FtsZ (not GDP-precharged) in the presence of free GDP and ATP as well. Mutant NDK, partially deficient in GTP synthesis from ATP and GDP, triggered low level of polymerisation of MsFtsZ, but not of MtFtsZ. As characteristic of NDK's NTP substrate non-specificity, it used CTP, TTP, and UTP also to convert GDP to GTP, to trigger FtsZ polymerisation. The NDK of one mycobacterial species could trigger the polymerisation of the FtsZ of another mycobacterial species. Both the recombinant and the native NDK and FtsZ showed interaction with each other in vitro and ex vivo, alluding to the possibility of direct phosphorylation of FtsZ-bound GDP by NDK. Conclusion Irrespective of the bacterial species, NDK interacts with FtsZ in vitro and ex vivo and, through the synthesis of GTP from FtsZ-bound GDP and/or free GDP, and ATP (CTP/TTP/UTP), triggers FtsZ polymerisation. The possible biological context of this novel activity of NDK is presented.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Enzyme-and pH-responsive polyelectrolyte nanocapsules having diameters in the range of 200 +/- 20 nm were fabricated by means of Layer-by-Layer assembly of biopolymers, protamine, and heparin, and then loaded with anticancer drug doxorubicin. The incorporation of the FDA-approved peptide drug protamine as a wall component rendered the capsules responsive to enzyme stimuli. The stimuli-responsive drug release from these nanocapsules was evaluated, and further modulation of capsule permeability to avoid premature release was demonstrated by crosslinking the wall components. The interaction of the nanocapsules with cancer cells was studied using MCF-7 breast cancer cells. These capsules were readily internalized and disintegrated inside the cells, culminating in the release of the loaded doxorubicin and subsequent cell death as observed by confocal microscopy and MTT Assay. The bioavailability studies performed using BALB/c mice revealed that the encapsulated doxorubicin exhibited enhanced bioavailability compared to free doxorubicin. Our results indicate that this stimuli-responsive system fabricated from clinically used FDA-approved molecules and exhibiting minimal premature release has great potential for drug-delivery applications.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Enzyme-and pH-responsive polyelectrolyte nanocapsules having diameters in the range of 200 +/- 20 nm were fabricated by means of Layer-by-Layer assembly of biopolymers, protamine, and heparin, and then loaded with anticancer drug doxorubicin. The incorporation of the FDA-approved peptide drug protamine as a wall component rendered the capsules responsive to enzyme stimuli. The stimuli-responsive drug release from these nanocapsules was evaluated, and further modulation of capsule permeability to avoid premature release was demonstrated by crosslinking the wall components. The interaction of the nanocapsules with cancer cells was studied using MCF-7 breast cancer cells. These capsules were readily internalized and disintegrated inside the cells, culminating in the release of the loaded doxorubicin and subsequent cell death as observed by confocal microscopy and MTT Assay. The bioavailability studies performed using BALB/c mice revealed that the encapsulated doxorubicin exhibited enhanced bioavailability compared to free doxorubicin. Our results indicate that this stimuli-responsive system fabricated from clinically used FDA-approved molecules and exhibiting minimal premature release has great potential for drug-delivery applications.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Although DNA interstrand crosslinking (ICL) agents such as mitomycin C, cisplatin and psoralen serve as potent anticancer drugs, these agents are known to have dose-limiting toxic effects on normal cells. Moreover, tumor resistance to these agents has been reported. Here, we show that trans-dichlorooxovanadium (IV) complex of pyrenyl terpyridine (VDC) is a novel photoinducible DNA crosslinking agent. By a combination of in vitro and ex vivo experiments including plasmid-based assays, we find that VDC forms monoadducts on the DNA and can be activated by UV-A and visible light to generate DNA interstrand crosslinks. VDC efficiently activates Fanconi anemia (FA) pathway of DNA interstrand crosslink repair. Strikingly, photoinduction of VDC induces prolonged activation of cell cycle checkpoint and a high degree of cell death in homologous recombination (HR)/ICL repair defective cells. Moreover, VDC specifically targets cells that express pathological RAD51C mutants. These data imply that VDC can be potentially used for cancer therapy and suggest that tumors arising in patients with gene mutations in FA and HR repair pathway can be specifically targeted by a photoactivatable VDC.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

"Click" chemistry has become an efficient avenue to unimolecular polymeric nanoparticles through the self-crosslinking of individual polymer chains containing appropriate functional groups. Herein we report the synthesis of ultra-small (7 nm in size) polymethyl methacrylate (PMMA) nanoparticles (NPs) by the "metal-free" cross-linking of PMMA-precursor chains prepared by reversible addition-fragmentation chain transfer (RAFT) polymerization containing beta-ketoester functional groups. Intramolecular collapse was performed by the one-pot reaction of beta-ketoester moieties with alkyl diamines in tetrahydrofurane at r.t. (i.e., by enamine formation). The collapsing process was followed by size exclusion chromatography and by nuclear magnetic resonance spectroscopy. The size of the resulting PMMA-NPs was determined by dynamic light scattering. Enamine "click" chemistry increases the synthetic toolbox for the efficient synthesis of metal-free, ultra-small polymeric NPs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Neste trabalho, copolímeros à base de acrilonitrila e divinilbenzeno foram sintetizados, utilizando a técnica de polimerização em suspensão, na presença de três agentes porogênicos diferentes (álcool isoamílico, metil-etil-cetona e tolueno). Esses copolímeros foram caracterizados por meio da determinação da densidade aparente, do volume e diâmetro de poros, por microscopia ótica e microscopia eletrônica de varredura e foram avaliados quanto à capacidade de inchamento em heptano e tolueno. O principal intuito dessa pesquisa foi correlacionar a formação da estrutura porosa desses materiais com os principais parâmetros de síntese (grau de diluição dos monômeros, poder solvatante do diluente e teor do agente de reticulação). Desses parâmetros, o que mais influenciou na formação da estrutura porosa desses materiais foi o poder solvatante do diluente. A teoria dos parâmetros de solubilidade de Hansen e Hildebrand foi utilizada com o intuito de fazer uma previsão das características porosas dos copolímeros à base de acrilonitrila e divinilbenzeno sintetizados na presença de três diluentes diferentes. Dentre esses diluentes, o álcool isoamílico foi o pior solvente para os copolímeros de AN-DVB, em todos os teores de agente de reticulação e em todas as diluições utilizadas. O tolueno foi o melhor solvente para os copolímeros que contêm altos teores de agente de reticulação. Estas observações estão de acordo com as previsões dos parâmetros de solubilidade de Hansen e Hildebrand. A metil-etil-cetona foi o melhor solvente para os copolímeros que contêm teores intermediários de agente de reticulação. Esta observação só está condizente com o parâmetro de solubilidade de Hansen.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Neste trabalho, desenvolveu-se um sistema de detecção fotoacústico para medidas simultâneas e independentes dos sinais fotoacústicos dianteiro e traseiro, utilizando dois microfones e um único feixe de excitação. Utiliza-se a diferença de fase entre estes sinais para a determinação da difusividade térmica de materiais, com base na abordagem teórica da técnica da Diferença de Fase dos Dois Feixes (T2F). Na metodologia apresentada não há a necessidade de se alternar o feixe de excitação entre as faces da amostra. Esta característica torna mais rápido o procedimento de medida e simplifica o monitoramento automatizado de processos dinâmicos que afetam a difusividade térmica do material, como a cura de resinas poliméricas. É apresentado o procedimento utilizado para determinar a diferença entre as fases intrínsecas dos microfones e o método empregado para compensar tal diferença e, assim, obter a defasagem entre os sinais fotoacústicos dianteiro e traseiro. O sistema de detecção desenvolvido é avaliado em medidas de difusividade térmica de amostras metálicas (aço inoxidável AISI 304 e aço SAE 1020) e poliméricas (polipropileno e polietileno de baixa densidade). Os resultados obtidos concordam de forma satisfatória com dados disponíveis na literatura. Finalmente, a aplicação do sistema proposto ao monitoramento de cura de amostras de resina epóxi indicou sua potencialidade de acompanhar, em tempo real, este tipo de processo dinâmico.