991 resultados para corrosion product
Resumo:
Paraffin sections (n = 168, 27 benign, 16 low malignant potential [LMP] and 125 malignant tumours) from epithelial ovarian tumours were evaluated immunohistochemically for expression of retinoblastoma gene product (pRB) and p53 protein, and the relationship among pRB, p53 and cyclin-dependent kinase inhibitor 2 (CDKN2) gene product p16INK4A (p16) was analysed, following our previous study of p16. Forty-one percent of the benign, 50% of the LMP and most (71%) of the malignant tumours showed high pRB expression. High expression of pRB (>50% pRB-positive cells) significantly correlated with non-mucinous histological subtypes. Reduced pRB expression, substage and residual disease were significant predictors for poor prognosis in stage I patients. All the benign and most of the LMP (81%) tumours were in either the p53-negative or low p53-positive category, but nearly half of the malignant tumours had high p53 expression. High p53 accumulation was found in non-mucinous, high grade and late stage tumours. For well-differentiated carcinomas, high p53 expression was a predictor of poor prognosis. However, even though high p53 expression was not associated with histological subtype, stage or the presence of residual disease, high p53 expression was not an independent predictor when all clinical parameters were combined. For all ovarian cancers, a close correlation was found between high p53 and high p16 expression. The relationship between the expression of pRB and p16 depended on tumour stage. In stage I tumours, high pRB was associated with low p16 reactivity. On the other hand, most advanced tumours showed both high pRB and high p16 reactivity. Int. J. Cancer 74:407–415, 1997. © 1997 Wiley-Liss, Inc.
Resumo:
Paraffin sections from 190 epithelial ovarian tumours, including 159 malignant and 31 benign epithelial tumours, were analysed immunohistochemically for expression of cyclin-dependent kinase inhibitor 2 (CDKN2A) gene product p16INK4A (p16). Most benign tumours showed no p16 expression in the tumour cells, whereas only 11% of malignant cancers were p16 negative. A high proportion of p16-positive tumour cells was associated with advanced stage and grade, and with poor prognosis in cancer patients. For FIGO stage 1 tumours, a high proportion of p16-positive tumour cells was associated with poorer survival, suggesting that accumulation of p16 is an early event of ovarian tumorigenesis. In contrast to tumour cells, high expression of p16 in the surrounding stromal cells was not associated with the stage and grade, but was associated with longer survival. When all parameters were combined in multivariate analysis, high p16 expression in stromal cells was not an independent predictor for survival, indicating that low p16 expression in stromal cells is associated with other markers of tumour progression. High expression of p16 survival in the stromal cells of tumours from long-term survivors suggests that tumour growth is limited to some extent by factors associated with p16 expression in the matrix.
Resumo:
Recently many international tertiary educational programs have capitalised on the value design and business can have upon their interception (Martin, 2009; Brown, 2008; Bruce and Bessant, 2002; Manzini, 2009). This paper discusses the role that two teaching units – New Product Development and Design Led Innovation – play in forming an understanding of commercialisation needed in today’s Industrial Design education. These units are taught consecutively in the later years of the Bachelor of Industrial Design program at the Queensland University of Technology, Brisbane, Australia. In this paper, each teaching unit is discussed in detail and then as a conglomerate, in order to form a basis of knowledge students need in order to fully capitalise on the value design has in business, and to produce a more capable Industrial Design graduate of the future.
Resumo:
This research paper explores the impact product personalisation has upon product attachment and aims to develop a deeper understanding of why, how and if consumers choose to do so. The current research in this field is mainly based on attachment theories and is predominantly product specific. This paper researches the link between product attachment and personalisation through in-depth, semi-structured interviews, where the data has been thematically analysed and broken down into three themes, and nine sub-themes. It was found that participants did become more attached to products once they were personalised and the reasons why this occurred varied. The most common reasons that led to personalisation were functionality and usability, the expression of personality through a product and the complexity of personalisation. The reasons why participants felt connected to their products included strong emotions/memories, the amount of time and effort invested into the personalisation, a sense of achievement. Reasons behind the desire for personalisation included co-designing, expression of uniqueness/individualism and having choice for personalisation. Through theme and inter-theme relationships, many correlations were formed, which created the basis for design recommendations. These recommendations demonstrate how a designer could implement the emotions and reasoning for personalisation into the design process.
Resumo:
Much has been written on Michel Foucault’s reluctance to clearly delineate a research method, particularly with respect to genealogy (Harwood 2000; Meadmore, Hatcher, & McWilliam 2000; Tamboukou 1999). Foucault (1994, p. 288) himself disliked prescription stating, “I take care not to dictate how things should be” and wrote provocatively to disrupt equilibrium and certainty, so that “all those who speak for others or to others” no longer know what to do. It is doubtful, however, that Foucault ever intended for researchers to be stricken by that malaise to the point of being unwilling to make an intellectual commitment to methodological possibilities. Taking criticism of “Foucauldian” discourse analysis as a convenient point of departure to discuss the objectives of poststructural analyses of language, this paper develops what might be called a discursive analytic; a methodological plan to approach the analysis of discourses through the location of statements that function with constitutive effects.
Resumo:
In this paper we investigate the distribution of the product of Rayleigh distributed random variables. Considering the Mellin-Barnes inversion formula and using the saddle point approach we obtain an upper bound for the product distribution. The accuracy of this tail-approximation increases as the number of random variables in the product increase.
Resumo:
As one of the longest running franchises in cinema history, and with its well-established use of product placements, the James Bond film series provides an ideal framework within which to measure and catalogue the number and types of products used within a particular timeframe. This case study will draw upon extensive content analysis of the James Bond film series in order to chart the evolution of product placement across the franchise's 50 year history.
Resumo:
Product rating systems are very popular on the web, and users are increasingly depending on the overall product ratings provided by websites to make purchase decisions or to compare various products. Currently most of these systems directly depend on users’ ratings and aggregate the ratings using simple aggregating methods such as mean or median [1]. In fact, many websites also allow users to express their opinions in the form of textual product reviews. In this paper, we propose a new product reputation model that uses opinion mining techniques in order to extract sentiments about product’s features, and then provide a method to generate a more realistic reputation value for every feature of the product and the product itself. We considered the strength of the opinion rather than its orientation only. We do not treat all product features equally when we calculate the overall product reputation, as some features are more important to customers than others, and consequently have more impact on customers buying decisions. Our method provides helpful details about the product features for customers rather than only representing reputation as a number only.
Resumo:
Knowledge has been widely recognised as a determinant of business performance. Business capabilities require an effective share of resource and knowledge. Specifically, knowledge sharing (KS) between different companies and departments can improve manufacturing processes since intangible knowledge plays an enssential role in achieving competitive advantage. This paper presents a mixed method research study into the impact of KS on the effectiveness of new product development (NPD) in achieving desired business performance (BP). Firstly, an empirical study utilising moderated regression analysis was conducted to test whether and to what extent KS has leveraging power on the relationship between NPD and BP constructs and variables. Secondly, this empirically verified hypothesis was validated through explanatory case studies involving two Taiwanese manufacturing companies using a qualitative interaction term pattern matching technique. The study provides evidence that knowledge sharing and management activities are essential for deriving competitive advantage in the manufacturing industry.
Resumo:
This report presents a snapshot from work which was funded by the Queensland Injury Prevention Council in 2010-11 titled “Feasibility of Using Health Data Sources to Inform Product Safety Surveillance in Queensland children”. The project provided an evaluation of the current available evidence-base for identification and surveillance of product-related injuries in children in Queensland and Australia. A comprehensive 300 page report was produced (available at: http://eprints.qut.edu.au/46518/) and a series of recommendations were made which proposed: improvements in the product safety data system, increased utilisation of health data for proactive and reactive surveillance, enhanced collaboration between the health sector and the product safety sector, and improved ability of health data to meet the needs of product safety surveillance. At the conclusion of the project, a Consumer Product Injury Research Advisory group (CPIRAG) was established as a working party to the Queensland Injury Prevention Council (QIPC), to prioritise and advance these recommendations and to work collaboratively with key stakeholders to promote the role of injury data to support product safety policy decisions at the Queensland and national level. This group continues to meet monthly and is comprised of the organisations represented on the second page of this report. One of the key priorities of the CPIRAG group for 2012 was to produce a snapshot report to highlight problem areas for potential action arising out of the larger report. Subsequent funding to write this snapshot report was provided by the Institute for Health and Biomedical Innovation, Injury Prevention and Rehabilitation Domain at QUT in 2012. This work was undertaken by Dr Kirsten McKenzie and researchers from QUT's Centre for Accident Research and Road Safety - Queensland. This snapshot report provides an evidence base for potential further action on a range of children’s products that are significantly represented in injury data. Further information regarding injury hazards, safety advice and regulatory responses are available on the Office of Fair Trading (OFT) Queensland website and the Product Safety Australia websites. Links to these resources are provided for each product reviewed.
Resumo:
Identifying the design features that impact construction is essential to developing cost effective and constructible designs. The similarity of building components is a critical design feature that affects method selection, productivity, and ultimately construction cost and schedule performance. However, there is limited understanding of what constitutes similarity in the design of building components and limited computer-based support to identify this feature in a building product model. This paper contributes a feature-based framework for representing and reasoning about component similarity that builds on ontological modelling, model-based reasoning and cluster analysis techniques. It describes the ontology we developed to characterize component similarity in terms of the component attributes, the direction, and the degree of variation. It also describes the generic reasoning process we formalized to identify component similarity in a standard product model based on practitioners' varied preferences. The generic reasoning process evaluates the geometric, topological, and symbolic similarities between components, creates groupings of similar components, and quantifies the degree of similarity. We implemented this reasoning process in a prototype cost estimating application, which creates and maintains cost estimates based on a building product model. Validation studies of the prototype system provide evidence that the framework is general and enables a more accurate and efficient cost estimating process.
Resumo:
Much has been written on Michel Foucault’s reluctance to clearly delineate a research method, particularly with respect to genealogy (Harwood 2000; Meadmore, Hatcher, & McWilliam 2000; Tamboukou 1999). Foucault (1994, p. 288) himself disliked prescription stating, “I take care not to dictate how things should be” and wrote provocatively to disrupt equilibrium and certainty, so that “all those who speak for others or to others” no longer know what to do. It is doubtful, however, that Foucault ever intended for researchers to be stricken by that malaise to the point of being unwilling to make an intellectual commitment to methodological possibilities. Taking criticism of “Foucauldian” discourse analysis as a convenient point of departure to discuss the objectives of poststructural analyses of language, this paper develops what might be called a discursive analytic; a methodological plan to approach the analysis of discourses through the location of statements that function with constitutive effects.
Resumo:
Background Efficient effective child product safety (PS) responses require data on hazards, injury severity and injury probability. PS responses in Australia largely rely on reports from manufacturers/retailers, other jurisdictions/regulators, or consumers. The extent to which reactive responses reflect actual child injury priorities is unknown. Aims/Objectives/Purpose This research compared PS issues for children identified using data compiled from PS regulatory data and data compiled from health data sources in Queensland, Australia. Methods PS regulatory documents describing issues affecting children in Queensland in 2008–2009 were compiled and analysed to identify frequent products and hazards. Three health data sources (ED, injury surveillance and hospital data) were analysed to identify frequent products and hazards. Results/Outcomes Projectile toys/squeeze toys were the priority products for PS regulators with these toys having the potential to release small parts presenting choking hazards. However, across all health datasets, falls were the most common mechanism of injury, and several of the products identified were not subject to a PS system response. While some incidents may not require a response, a manual review of injury description text identified child poisonings and burns as common mechanisms of injuries in the health data where there was substantial documentation of product-involvement, yet only 10% of PS system responses focused on these two mechanisms combined. Significance/contribution to the field Regulatory data focused on products that fail compliance checks with ‘potential’ to cause harm, and health data identified actual harm, resulting in different prioritisation of products/mechanisms. Work is needed to better integrate health data into PS responses in Australia.
Resumo:
Currently, recommender systems (RS) have been widely applied in many commercial e-commerce sites to help users deal with the information overload problem. Recommender systems provide personalized recommendations to users and thus help them in making good decisions about which product to buy from the vast number of product choices available to them. Many of the current recommender systems are developed for simple and frequently purchased products like books and videos, by using collaborative-filtering and content-based recommender system approaches. These approaches are not suitable for recommending luxurious and infrequently purchased products as they rely on a large amount of ratings data that is not usually available for such products. This research aims to explore novel approaches for recommending infrequently purchased products by exploiting user generated content such as user reviews and product click streams data. From reviews on products given by the previous users, association rules between product attributes are extracted using an association rule mining technique. Furthermore, from product click streams data, user profiles are generated using the proposed user profiling approach. Two recommendation approaches are proposed based on the knowledge extracted from these resources. The first approach is developed by formulating a new query from the initial query given by the target user, by expanding the query with the suitable association rules. In the second approach, a collaborative-filtering recommender system and search-based approaches are integrated within a hybrid system. In this hybrid system, user profiles are used to find the target user’s neighbour and the subsequent products viewed by them are then used to search for other relevant products. Experiments have been conducted on a real world dataset collected from one of the online car sale companies in Australia to evaluate the effectiveness of the proposed recommendation approaches. The experiment results show that user profiles generated from user click stream data and association rules generated from user reviews can improve recommendation accuracy. In addition, the experiment results also prove that the proposed query expansion and the hybrid collaborative filtering and search-based approaches perform better than the baseline approaches. Integrating the collaborative-filtering and search-based approaches has been challenging as this strategy has not been widely explored so far especially for recommending infrequently purchased products. Therefore, this research will provide a theoretical contribution to the recommender system field as a new technique of combining collaborative-filtering and search-based approaches will be developed. This research also contributes to a development of a new query expansion technique for infrequently purchased products recommendation. This research will also provide a practical contribution to the development of a prototype system for recommending cars.
Resumo:
In order to develop more inclusive products and services, designers need a means of assessing the inclusivity of existing products and new concepts. Following previous research on the development of scales for inclusive design at University of Cambridge, Engineering Design Centre (EDC) [1], this paper presents the latest version of the exclusion audit method. For a specific product interaction, this estimates the proportion of the Great British population who would be excluded from using a product or service, due to the demands the product places on key user capabilities. A critical part of the method involves rating of the level of demand placed by a task on a range of key user capabilities, so the procedure to perform this assessment was operationalised and then its reliability was tested with 31 participants. There was no evidence that participants rated the same demands consistently. The qualitative results from the experiment suggest that the consistency of participants’ demand level ratings could be significantly improved if the audit materials and their instructions better guided the participant through the judgement process.