990 resultados para convex subgraphs


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Classification learning is dominated by systems which induce large numbers of small axis-orthogonal decision surfaces. This strongly biases such systems towards particular hypothesis types but there is reason believe that many domains have underlying concepts which do not involve axis orthogonal surfaces. Further, the multiplicity of small decision regions mitigates against any holistic appreciation of the theories produced by these systems, notwithstanding the fact that many of the small regions are individually comprehensible. This thesis investigates modeling concepts as large geometric structures in n-dimensional space. Convex hulls are a superset of the set of axis orthogonal hyperrectangles into which axis orthogonal systems partition the instance space. In consequence, there is reason to believe that convex hulls might provide a more flexible and general learning bias than axis orthogonal regions. The formation of convex hulls around a group of points of the same class is shown to be a usable generalisation and is more general than generalisations produced by axis-orthogonal based classifiers, without constructive induction, like decision trees, decision lists and rules. The use of a small number of large hulls as a concept representation is shown to provide classification performance which can be better than that of classifiers which use a large number of small fragmentary regions for each concept. A convex hull based classifier, CH1, has been implemented and tested. CH1 can handle categorical and continuous data. Algorithms for two basic generalisation operations on hulls, inflation and facet deletion, are presented. The two operations are shown to improve the accuracy of the classifier and provide moderate classification accuracy over a representative selection of typical, largely or wholly continuous valued machine learning tasks. The classifier exhibits superior performance to well-known axis-orthogonal-based classifiers when presented with domains where the underlying decision surfaces are not axis parallel. The strengths and weaknesses of the system are identified. One particular advantage is the ability of the system to model domains with approximately the same number of structures as there are underlying concepts. This leads to the possibility of extraction of higher level mathematical descriptions of the induced concepts, using the techniques of computational geometry, which is not possible from a multiplicity of small regions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We found an interesting relation between convex optimization and sorting problem. We present a parallel algorithm to compute multiple order statistics of the data by minimizing a number of related convex functions. The computed order statistics serve as splitters that group the data into buckets suitable for parallel bitonic sorting. This led us to a parallel bucket sort algorithm, which we implemented for many-core architecture of graphics processing units (GPUs). The proposed sorting method is competitive to the state-of-the-art GPU sorting algorithms and is superior to most of them for long sorting keys.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the case of real-valued inputs, averaging aggregation functions have been studied extensively with results arising in fields including probability and statistics, fuzzy decision-making, and various sciences. Although much of the behavior of aggregation functions when combining standard fuzzy membership values is well established, extensions to interval-valued fuzzy sets, hesitant fuzzy sets, and other new domains pose a number of difficulties. The aggregation of non-convex or discontinuous intervals is usually approached in line with the extension principle, i.e. by aggregating all real-valued input vectors lying within the interval boundaries and taking the union as the final output. Although this is consistent with the aggregation of convex interval inputs, in the non-convex case such operators are not idempotent and may result in outputs which do not faithfully summarize or represent the set of inputs. After giving an overview of the treatment of non-convex intervals and their associated interpretations, we propose a novel extension of the arithmetic mean based on penalty functions that provides a representative output and satisfies idempotency.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a convex geometry (CG)-based method for blind separation of nonnegative sources. First, the unaccessible source matrix is normalized to be column-sum-to-one by mapping the available observation matrix. Then, its zero-samples are found by searching the facets of the convex hull spanned by the mapped observations. Considering these zero-samples, a quadratic cost function with respect to each row of the unmixing matrix, together with a linear constraint in relation to the involved variables, is proposed. Upon which, an algorithm is presented to estimate the unmixing matrix by solving a classical convex optimization problem. Unlike the traditional blind source separation (BSS) methods, the CG-based method does not require the independence assumption, nor the uncorrelation assumption. Compared with the BSS methods that are specifically designed to distinguish between nonnegative sources, the proposed method requires a weaker sparsity condition. Provided simulation results illustrate the performance of our method.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Convex combinations of long memory estimates using the same data observed at different sampling rates can decrease the standard deviation of the estimates, at the cost of inducing a slight bias. The convex combination of such estimates requires a preliminary correction for the bias observed at lower sampling rates, reported by Souza and Smith (2002). Through Monte Carlo simulations, we investigate the bias and the standard deviation of the combined estimates, as well as the root mean squared error (RMSE), which takes both into account. While comparing the results of standard methods and their combined versions, the latter achieve lower RMSE, for the two semi-parametric estimators under study (by about 30% on average for ARFIMA(0,d,0) series).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper I will investigate the conditions under which a convex capacity (or a non-additive probability which exhibts uncertainty aversion) can be represented as a squeeze of a(n) (additive) probability measure associate to an uncertainty aversion function. Then I will present two alternatives forrnulations of the Choquet integral (and I will extend these forrnulations to the Choquet expected utility) in a parametric approach that will enable me to do comparative static exercises over the uncertainty aversion function in an easy way.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We consider a class of sampling-based decomposition methods to solve risk-averse multistage stochastic convex programs. We prove a formula for the computation of the cuts necessary to build the outer linearizations of the recourse functions. This formula can be used to obtain an efficient implementation of Stochastic Dual Dynamic Programming applied to convex nonlinear problems. We prove the almost sure convergence of these decomposition methods when the relatively complete recourse assumption holds. We also prove the almost sure convergence of these algorithms when applied to risk-averse multistage stochastic linear programs that do not satisfy the relatively complete recourse assumption. The analysis is first done assuming the underlying stochastic process is interstage independent and discrete, with a finite set of possible realizations at each stage. We then indicate two ways of extending the methods and convergence analysis to the case when the process is interstage dependent.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We consider risk-averse convex stochastic programs expressed in terms of extended polyhedral risk measures. We derive computable con dence intervals on the optimal value of such stochastic programs using the Robust Stochastic Approximation and the Stochastic Mirror Descent (SMD) algorithms. When the objective functions are uniformly convex, we also propose a multistep extension of the Stochastic Mirror Descent algorithm and obtain con dence intervals on both the optimal values and optimal solutions. Numerical simulations show that our con dence intervals are much less conservative and are quicker to compute than previously obtained con dence intervals for SMD and that the multistep Stochastic Mirror Descent algorithm can obtain a good approximate solution much quicker than its nonmultistep counterpart. Our con dence intervals are also more reliable than asymptotic con dence intervals when the sample size is not much larger than the problem size.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new device was developed to hold linear transducers for transvaginal follicle aspiration. Efficacy of follicle aspiration was compared using a linear 6 MHz and a convex 5 MHz transducer. Fifty-five cows were submitted to follicle aspiration at random days of the estrous cycle. Aspirations were conducted with linear (n = 28) and convex (n = 38) transducers with 18 G needles at a negative pressure corresponding to 13 ml H2O/min. A greater number of follicles were aspirated using convex than to linear probe (12.4 versus 7.8, respectively, P < 0.05). Mean number of oocytes and recovery rates were similar for convex (5.4 and 48.6%) and linear (4.6 and 59.3%) transducers. Limited space between the linear transducer and needle guide restricted access to some portions of the ovary, reducing the number of follicles aspirated using a linear transducer. The newly developed adaptor allowed greater stability, holding the ovaries firmly against the linear transducer. This diminished mobility permitted a similar number of oocytes to be recovered with both transducers. In conclusion, this new adaptor provided a low cost alternative for routine follicle aspiration and oocyte recovery in cattle. (C) 2002 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Image restoration attempts to enhance images corrupted by noise and blurring effects. Iterative approaches can better control the restoration algorithm in order to find a compromise of restoring high details in smoothed regions without increasing the noise. Techniques based on Projections Onto Convex Sets (POCS) have been extensively used in the context of image restoration by projecting the solution onto hyperspaces until some convergence criteria be reached. It is expected that an enhanced image can be obtained at the final of an unknown number of projections. The number of convex sets and its combinations allow designing several image restoration algorithms based on POCS. Here, we address two convex sets: Row-Action Projections (RAP) and Limited Amplitude (LA). Although RAP and LA have already been used in image restoration domain, the former has a relaxation parameter (A) that strongly depends on the characteristics of the image that will be restored, i.e., wrong values of A can lead to poorly restoration results. In this paper, we proposed a hybrid Particle Swarm Optimization (PS0)-POCS image restoration algorithm, in which the A value is obtained by PSO to be further used to restore images by POCS approach. Results showed that the proposed PSO-based restoration algorithm outperformed the widely used Wiener and Richardson-Lucy image restoration algorithms. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have investigated and extensively tested three families of non-convex optimization approaches for solving the transmission network expansion planning problem: simulated annealing (SA), genetic algorithms (GA), and tabu search algorithms (TS). The paper compares the main features of the three approaches and presents an integrated view of these methodologies. A hybrid approach is then proposed which presents performances which are far better than the ones obtained with any of these approaches individually. Results obtained in tests performed with large scale real-life networks are summarized.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work is related with the proposition of a so-called regular or convex solver potential to be used in numerical simulations involving a certain class of constitutive elastic-damage models. All the mathematical aspects involved are based on convex analysis, which is employed aiming a consistent variational formulation of the potential and its conjugate one. It is shown that the constitutive relations for the class of damage models here considered can be derived from the solver potentials by means of sub-differentials sets. The optimality conditions of the resulting minimisation problem represent in particular a linear complementarity problem. Finally, a simple example is present in order to illustrate the possible integration errors that can be generated when finite step analysis is performed. (C) 2003 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have investigated and extensively tested three families of non-convex optimization approaches for solving the transmission network expansion planning problem: simulated annealing (SA), genetic algorithms (GA), and tabu search algorithms (TS). The paper compares the main features of the three approaches and presents an integrated view of these methodologies. A hybrid approach is then proposed which presents performances which are far better than the ones obtained with any of these approaches individually. Results obtained in tests performed with large scale real-life networks are summarized.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The result that we treat in this article allows to the utilization of classic tools of convex analysis in the study of optimality conditions in the optimal control convex process for a Volterra-Stietjes linear integral equation in the Banach space G([a, b],X) of the regulated functions in [a, b], that is, the functions f : [a, 6] → X that have only descontinuity of first kind, in Dushnik (or interior) sense, and with an equality linear restriction. In this work we introduce a convex functional Lβf(x) of Nemytskii type, and we present conditions for its lower-semicontinuity. As consequence, Weierstrass Theorem garantees (under compacity conditions) the existence of solution to the problem min{Lβf(x)}. © 2009 Academic Publications.