968 resultados para consumption rate


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Results of studies in two biogeochemically active zones of the Atlantic Ocean (the Benguela upwelling waters and the region influenced by the Congo River run-off) are reported in the book. A multidisciplinary approach included studies of the major elements of the ocean ecosystem: sea water, plankton, suspended matter, bottom sediments, interstitial waters, aerosols, as well as a wide complex of oceanographic studies carried out under a common program. Such an approach, as well as a use of new methodical solutions led to obtaining principally new information on different aspects of oceanology.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

As the world's oceans continue to absorb anthropogenic CO2 from the atmosphere, the carbonate chemistry of seawater will change. This process, termed ocean acidification, may affect the physiology of marine organisms. Arctic seas are expected to experience the greatest decreases in pH in the future, as changing sea ice dynamics and naturally cold, brackish water, will accelerate ocean acidification. In this study, we investigated the effect of increased pCO2 on the early developmental stages of the key Arctic copepod Calanus glacialis. Eggs from wild-caught C. glacialis females from Svalbard, Norway (80°N), were cultured for 2 months to copepodite stage C1 in 2°C seawater under four pCO2 treatments (320, 530, 800, and 1700 ?atm). Developmental rate, dry weight, and carbon and nitrogen mass were measured every other day throughout the experiment, and oxygen consumption rate was measured at stages N3, N6, and C1. All endpoints were unaffected by pCO2 levels projected for the year 2300. These results indicate that naupliar development in wild populations of C. glacialis is unlikely to be detrimentally affected in a future high CO2 ocean.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We show here that increased variability of temperature and pH synergistically negatively affects the energetics of intertidal zone crabs. Under future climate scenarios, coastal ecosystems are projected to have increased extremes of low tide-associated thermal stress and ocean acidification-associated low pH, the individual or interactive effects of which have yet to be determined. To characterize energetic consequences of exposure to increased variability of pH and temperature, we exposed porcelain crabs, Petrolisthes cinctipes, to conditions that simulated current and future intertidal zone thermal and pH environments. During the daily low tide, specimens were exposed to no, moderate or extreme heating, and during the daily high tide experienced no, moderate or extreme acidification. Respiration rate and cardiac thermal limits were assessed following 2.5 weeks of acclimation. Thermal variation had a larger overall effect than pH variation, though there was an interactive effect between the two environmental drivers. Under the most extreme temperature and pH combination, respiration rate decreased while heat tolerance increased, indicating a smaller overall aerobic energy budget (i.e. a reduced O2 consumption rate) of which a larger portion is devoted to basal maintenance (i.e. greater thermal tolerance indicating induction of the cellular stress response). These results suggest the potential for negative long-term ecological consequences for intertidal ectotherms exposed to increased extremes in pH and temperature due to reduced energy for behavior and reproduction.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

BACKGROUND: The immediate lethality caused by spinosad has been widely studied on Spodoptera exigua (H ¿ ubner). However, long-term effects can also provide valuable information on insecticide toxic action. Here, the persistence of spinosad on Capsicum annuum L. foliage and the lethal and sublethal effects of greenhouse-aged foliar residues of this insecticide on third instars of S. exigua are reported. RESULTS: Foliage was collected at 0, 3, 5, 10, 20, 30, 40 and 50 days after application, and spinosad residues were measured. Residues decreased over time according to first-order kinetics. The average rate constant and half-life of disappearance were 4.44×10?3 and156 daysand5.80×10?3 and120 days for60and120 mg L?1 respectively. Larval mortalitygradually decreased, corresponding to the residues, but was still appreciable (35 and 65% for 60 and 120 mg L?1 respectively) when the larvae were fed with foliage collected 50 days after treatment. Subsequently, pupal development was reduced and varied between 20 and 60% and between 21 and 41% for 60 and 120 mg L?1, respectively, in all ages of leaf residues that were bioassayed. At all time points, the consumption rate by the larvae was reduced between 62 and 84% for both concentrations that were bioassayed. CONCLUSION: It is concluded that, under the present greenhouse conditions, the degradation of spinosad was slower than that reported by other authors in the field, and, because of that, its residues could cause lethal and sublethal effects to S. exigua larvae.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A metabolic flux model was developed for Streptococcus zooepidemicus to compare the metabolism of glucose and maltose during aerobic batch cultivation. Lactic acid was the main product of glucose metabolism whereas acetic acid was the main product of maltose metabolism. This difference was chiefly attributed to the two-fold higher flux through NADH oxidase in maltose-grown cells that enabled the ATP generation rate to remain high despite a slower maltose consumption rate. The two-fold higher flux was matched by a two-fold increase in NADH oxidase activity, 2.53 +/- 0.1 mumol NADH min(-1) mg(-1) protein on maltose versus 1.07 +/- 0.04 Rmol NADH min(-1) mg(-1) protein on glucose, indicating that NADH oxidase activity is regulated by the energy status of the cell. Surprisingly, the energy status of the cell had little impact on hyaluronic acid (HA) yield and molecular weight. (C) 2003 Elsevier Science B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Soft tissue engineering presents significant challenges compared to other tissue engineering disciplines such as bone, cartilage or skin engineering. The very high cell density in most soft tissues, often combined with large implant dimensions, means that the supply of oxygen is a critical factor in the success or failure of a soft tissue scaffold. A model is presented for oxygen diffusion in a 15-60 mm diameter dome-shaped scaffold fed by a blood vessel loop at its base. This model incorporates simple models for vascular growth, cell migration and the effect of cell density on the effective oxygen diffusivity. The model shows that the dynamic, homogeneous cell seeding method often employed in small-scale applications is not applicable in the case of larger scale scaffolds such as these. Instead, we propose the implantation of a small biopsy of tissue close to a blood supply within the scaffold as a technique more likely to be successful. Crown Copyright (c) 2005 Published by Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The growth, maintenance and lysis processes of Nitrobacter were characterised. A Nitrobacter culture was enriched in a sequencing batch reactor (SBR). Fluorescent in situ hybridisation showed that Nitrobacter constituted 73% of the bacterial population. Batch tests were carried out to measure the oxygen uptake rate and/or nitrite consumption rate when both nitrite and CO2 were in excess, and in the absence of either of these two substrates. The results obtained, along with the SBR performance data, allowed the determination of the maintenance coefficient and in situ cell lysis rate of Nitrobacter. Nitrobacter spends a significant amount of energy for maintenance, which varies considerably with the specific growth rate. At maximum growth, Nitrobacter consume nitrite at a rate of 0.042 mgN/mgCOD(biomass)center dot h for maintenance purposes, which increases more than threefold to 0.143 mgN/mgCOD(biomass)center dot h in the absence of growth. In the SBR, where Nitrobacter grew at 40% of its maximum growth rate, a maintenance coefficient of 0.113 mgN/mgCOD center dot h was found, resulting in 42% of the total amount of nitrite being consumed for maintenance. The above three maintenance coefficient values obtained at different growth rates appear to support the maintenance model proposed in Pirt (1982). The in situ lysis rate of Nitrobacter was determined to be 0.07/day under aerobic conditions at 22 C and pH 7.3. Further, the maximum specific growth rate of Nitrobacter was estimated to be 0.02/h (0.48/day). The affinity constant of Nitrobacter with respect to nitrite was determined to be 1.50 mgNO(2)(-)-N/L, independent of the presence or absence of CO2. (c) 2006 Wiley Periodicals, Inc.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The inhibitory effects of nitrite (NO2-)/free nitrous acid (HNO2-FNA) on the metabolism of Nitrobacter were investigated using a method allowing the decoupling of the growth and energy generation processes. A lab-scale sequencing batch reactor was operated for the enrichment of a Nitrobacter culture. Fluorescent in situ hybridization (FISH) analysis showed that 73% of the bacterial population was Nitrobacter. Batch tests were carried out to assess the oxygen and nitrite consumption rates of the enriched culture at low and high nitrite levels, in the presence or absence of inorganic carbon. It was observed that in the absence of CO2, the Nitrobacter culture was able to oxidize nitrite at a rate that is 76% of that in the presence of CO2, with an oxygen consumption rate that is 85% of that measured in the presence of CO2. This enabled the impacts of nitrite/FNA on the catabolic and anabolic processes of Nitrobacter to be assessed separately. FNA rather than nitrite was likely the actual inhibitor to the Nitrobacter metabolism. It was revealed that FNA of up to 0.05 mg HNO2-N center dot L-1 (3.4 mu M), which was the highest FNA concentration used in this study, did not have any inhibitory effect on the catabolic processes of Nitrobacter. However, FNA initiated its inhibition to the anabolic processes of Nitrobacter at approximately 0.011 mg HNO2-N center dot L-1 (0.8 mu M), and completely stopped biomass synthesis at a concentration of approximately 0.023 mg HNO2-N center dot L-1 (1.6 mu M). The inhibitory effect could be described by an empirical inhibitory model proposed in this paper, but the underlying mechanisms remain to be revealed.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Nitric Oxide (NO) is produced in the vascular endothelium where it then diffuses to the adjacent smooth muscle cells (SMC) activating agents known to regulate vascular tone. The close proximity of the site of NO production to the red blood cells (RBC) and its known fast consumption by hemoglobin, suggests that the blood will scavenge most of the NO produced. Therefore, it is unclear how NO is able to play its role in accomplishing vasodilation. Investigation of NO production and consumption rates will allow insight into this paradox. DAF-FM is a sensitive NO fluorescence probe widely used for qualitative assessment of cellular NO production. With the aid of a mathematical model of NO/DAF-FM reaction kinetics, experimental studies were conducted to calibrate the fluorescence signal showing that the slope of fluorescent intensity is proportional to [NO]2 and exhibits a saturation dependence on [DAF-FM]. In addition, experimental data exhibited a Km dependence on [NO]. This finding was incorporated into the model elucidating NO 2 as the possible activating agent of DAF-FM. A calibration procedure was formed and applied to agonist stimulated cells, providing an estimated NO release rate of 0.418 ± 0.18 pmol/cm2s. To assess NO consumption by RBCs, measurements of the rate of NO consumption in a gas stream flowing on top of an RBC solution of specified Hematocrit (Hct) was performed. The consumption rate constant (kbl)in porcine RBCs at 25°C and 45% Hct was estimated to be 3500 + 700 s-1. kbl is highly dependent on Hct and can reach up to 9900 + 4000 s-1 for 60% Hct. The nonlinear dependence of kbl on Hct suggests a predominant role for extracellular diffusion in limiting NO uptake. Further simulations showed a linear relationship between varying NO production rates and NO availability in the SMCs utilizing the estimated NO consumption rate. The corresponding SMC [NO] level for the average NO production rate estimated was approximately 15.1 nM. With the aid of experimental and theoretical methods we were able to examine the NO paradox and exhibit that endothelial derived NO is able to escape scavenging by RBCs to diffuse to the SMCs.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Geological, mineralogical and microbiological aspects of the methane cycle in water and sediments of different areas in the oceans are under consideration in the monograph. Original and published estimations of formation- and oxidation rates of methane with use of radioisotope and isotopic methods are given. The role of aerobic and anaerobic microbial oxidation of methane in production of organic matter and in formation of authigenic carbonates is considered. Particular attention is paid to processes of methane transformation in areas of its intensive input to the water column from deep-sea hydrothermal sources, mud volcanoes, and cold methane seeps.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Geochemical barrier zones play an important role in determining various physical systems and characteristics of oceans, e.g. hydrodynamics, salinity, temperature and light. In the book each of more than 30 barrier zones are illustrated and defined by physical, chemical and biological parameters. Among the topics discussed are processes of inflow, transformation and precipitation of the sedimentary layer of the open oceans and more restricted areas such as the Baltic, Black and Mediterranean Seas.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Among the Siberian shelf seas the Kara Sea is most strongly influenced by riverine runoff with nearly 1500 km fresh water discharge per year. This fresh water, discharged mainly by Ob and Yenisei, contains about 3.1 * 106 and 4.6 * 106 tons of total organic carbon per year, respectively (Gordeev et al. 1996). Little is known about the relevance of this organic material for biological communities, neither for the Kara Sea nor for the adjacent deep basins of the central Arctic Ocean. Aiming at elucidating the fate of fluvial matter transported from the rivers via estuaries into the central Arctic Ocean and the relative importance of marine organic matter being produced such information is crucial. Here we present calculations on the organic carbon demand of the Kara Sea macrozoobenthos based on measured biomass (total wet weight [ww] per 0.25 m ) from quantitative box corer samples and empirical relationships between biomass, annual production, annual respiration, and carbon remineralisation. This bottom-up approach may serve as a first estimate of the carbon remineralization potential of a given zoobenthos community (or area) as long as no data on in situ respiration rates are available. Our data basis comprises 54 stations sampled in summer seasons 1997, 1999 and 2000 in the Kara Sea at water depths between 10 and 68 m. The geographical area represented by stations analysed covers roughly 178 000 km**2, which is about one fifth of the total Kara Sea area. In this area, 290 species of invertebrate macrozoobenthos were identified with polychaeta, Crustacea, mollusca and echinodermata being the most abundant. For all stations analysed, mean biomass values ranged between 4.3 and 778.1 g ww/m**2 with organic carbon demands between 3.5 and 43.2 mg C/m**2/d. For the area of 178 000 km2 a preliminary total consumption of 1.4 * 10**6t Corg/y (equivalent to 21.5 mg C/m**2/d) was calculated for the macrozoobenthos. An extrapolation of our data would lead to an annual carbon demand of about 5-7 * 106 t for the whole Kara Sea macrozoobenthos (or 15.5-21.7 mg C/m2/d).