973 resultados para computational modelling


Relevância:

30.00% 30.00%

Publicador:

Resumo:

At the end of the 20th century, we can look back on a spectacular development of numerical weather prediction, which has, practically uninterrupted, been going on since the middle of the century. High-resolution predictions for more than a week ahead for any part of the globe are now routinely produced and anyone with an Internet connection can access many of these forecasts for anywhere in the world. Extended predictions for several seasons ahead are also being done — the latest El Niño event in 1997/1998 is an example of such a successful prediction. The great achievement is due to a number of factors including the progress in computational technology and the establishment of global observing systems, combined with a systematic research program with an overall strategy towards building comprehensive prediction systems for climate and weather. In this article, I will discuss the different evolutionary steps in this development and the way new scientific ideas have contributed to efficiently explore the computing power and in using observations from new types of observing systems. Weather prediction is not an exact science due to unavoidable errors in initial data and in the models. To quantify the reliability of a forecast is therefore essential and probably more so the longer the forecasts are. Ensemble prediction is thus a new and important concept in weather and climate prediction, which I believe will become a routine aspect of weather prediction in the future. The limit between weather and climate prediction is becoming more and more diffuse and in the final part of this article I will outline the way I think development may proceed in the future.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Relating the measurable, large scale, effects of anaesthetic agents to their molecular and cellular targets of action is necessary to better understand the principles by which they affect behavior, as well as enabling the design and evaluation of more effective agents and the better clinical monitoring of existing and future drugs. Volatile and intravenous general anaesthetic agents (GAs) are now known to exert their effects on a variety of protein targets, the most important of which seem to be the neuronal ion channels. It is hence unlikely that anaesthetic effect is the result of a unitary mechanism at the single cell level. However, by altering the behavior of ion channels GAs are believed to change the overall dynamics of distributed networks of neurons. This disruption of regular network activity can be hypothesized to cause the hypnotic and analgesic effects of GAs and may well present more stereotypical characteristics than its underlying microscopic causes. Nevertheless, there have been surprisingly few theories that have attempted to integrate, in a quantitative manner, the empirically well documented alterations in neuronal ion channel behavior with the corresponding macroscopic effects. Here we outline one such approach, and show that a range of well documented effects of anaesthetics on the electroencephalogram (EEG) may be putatively accounted for. In particular we parameterize, on the basis of detailed empirical data, the effects of halogenated volatile ethers (a clinically widely used class of general anaesthetic agent). The resulting model is able to provisionally account for a range of anaesthetically induced EEG phenomena that include EEG slowing, biphasic changes in EEG power, and the dose dependent appearance of anomalous ictal activity, as well as providing a basis for novel approaches to monitoring brain function in both health and disease.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

To bridge the gaps between traditional mesoscale modelling and microscale modelling, the National Center for Atmospheric Research, in collaboration with other agencies and research groups, has developed an integrated urban modelling system coupled to the weather research and forecasting (WRF) model as a community tool to address urban environmental issues. The core of this WRF/urban modelling system consists of the following: (1) three methods with different degrees of freedom to parameterize urban surface processes, ranging from a simple bulk parameterization to a sophisticated multi-layer urban canopy model with an indoor–outdoor exchange sub-model that directly interacts with the atmospheric boundary layer, (2) coupling to fine-scale computational fluid dynamic Reynolds-averaged Navier–Stokes and Large-Eddy simulation models for transport and dispersion (T&D) applications, (3) procedures to incorporate high-resolution urban land use, building morphology, and anthropogenic heating data using the National Urban Database and Access Portal Tool (NUDAPT), and (4) an urbanized high-resolution land data assimilation system. This paper provides an overview of this modelling system; addresses the daunting challenges of initializing the coupled WRF/urban model and of specifying the potentially vast number of parameters required to execute the WRF/urban model; explores the model sensitivity to these urban parameters; and evaluates the ability of WRF/urban to capture urban heat islands, complex boundary-layer structures aloft, and urban plume T&D for several major metropolitan regions. Recent applications of this modelling system illustrate its promising utility, as a regional climate-modelling tool, to investigate impacts of future urbanization on regional meteorological conditions and on air quality under future climate change scenarios. Copyright © 2010 Royal Meteorological Society

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Activating transcription factor 3 (Atf3) is rapidly and transiently upregulated in numerous systems, and is associated with various disease states. Atf3 is required for negative feedback regulation of other genes, but is itself subject to negative feedback regulation possibly by autorepression. In cardiomyocytes, Atf3 and Egr1 mRNAs are upregulated via ERK1/2 signalling and Atf3 suppresses Egr1 expression. We previously developed a mathematical model for the Atf3-Egr1 system. Here, we adjusted and extended the model to explore mechanisms of Atf3 feedback regulation. Introduction of an autorepressive loop for Atf3 tuned down its expression and inhibition of Egr1 was lost, demonstrating that negative feedback regulation of Atf3 by Atf3 itself is implausible in this context. Experimentally, signals downstream from ERK1/2 suppress Atf3 expression. Mathematical modelling indicated that this cannot occur by phosphorylation of pre-existing inhibitory transcriptional regulators because the time delay is too short. De novo synthesis of an inhibitory transcription factor (ITF) with a high affinity for the Atf3 promoter could suppress Atf3 expression, but (as with the Atf3 autorepression loop) inhibition of Egr1 was lost. Developing the model to include newly-synthesised miRNAs very efficiently terminated Atf3 protein expression and, with a 4-fold increase in the rate of degradation of mRNA from the mRNA/miRNA complex, profiles for Atf3 mRNA, Atf3 protein and Egr1 mRNA approximated to the experimental data. Combining the ITF model with that of the miRNA did not improve the profiles suggesting that miRNAs are likely to play a dominant role in switching off Atf3 expression post-induction.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper proposes a novel adaptive multiple modelling algorithm for non-linear and non-stationary systems. This simple modelling paradigm comprises K candidate sub-models which are all linear. With data available in an online fashion, the performance of all candidate sub-models are monitored based on the most recent data window, and M best sub-models are selected from the K candidates. The weight coefficients of the selected sub-model are adapted via the recursive least square (RLS) algorithm, while the coefficients of the remaining sub-models are unchanged. These M model predictions are then optimally combined to produce the multi-model output. We propose to minimise the mean square error based on a recent data window, and apply the sum to one constraint to the combination parameters, leading to a closed-form solution, so that maximal computational efficiency can be achieved. In addition, at each time step, the model prediction is chosen from either the resultant multiple model or the best sub-model, whichever is the best. Simulation results are given in comparison with some typical alternatives, including the linear RLS algorithm and a number of online non-linear approaches, in terms of modelling performance and time consumption.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

One of the first questions to consider when designing a new roll forming line is the number of forming steps required to produce a profile. The number depends on material properties, the cross-section geometry and tolerance requirements, but the tool designer also wants to minimize the number of forming steps in order to reduce the investment costs for the customer. There are several computer aided engineering systems on the market that can assist the tool designing process. These include more or less simple formulas to predict deformation during forming as well as the number of forming steps. In recent years it has also become possible to use finite element analysis for the design of roll forming processes. The objective of the work presented in this thesis was to answer the following question: How should the roll forming process be designed for complex geometries and/or high strength steels? The work approach included both literature studies as well as experimental and modelling work. The experimental part gave direct insight into the process and was also used to develop and validate models of the process. Starting with simple geometries and standard steels the work progressed to more complex profiles of variable depth and width, made of high strength steels. The results obtained are published in seven papers appended to this thesis. In the first study (see paper 1) a finite element model for investigating the roll forming of a U-profile was built. It was used to investigate the effect on longitudinal peak membrane strain and deformation length when yield strength increases, see paper 2 and 3. The simulations showed that the peak strain decreases whereas the deformation length increases when the yield strength increases. The studies described in paper 4 and 5 measured roll load, roll torque, springback and strain history during the U-profile forming process. The measurement results were used to validate the finite element model in paper 1. The results presented in paper 6 shows that the formability of stainless steel (e.g. AISI 301), that in the cold rolled condition has a large martensite fraction, can be substantially increased by heating the bending zone. The heated area will then become austenitic and ductile before the roll forming. Thanks to the phenomenon of strain induced martensite formation, the steel will regain the martensite content and its strength during the subsequent plastic straining. Finally, a new tooling concept for profiles with variable cross-sections is presented in paper 7. The overall conclusions of the present work are that today, it is possible to successfully develop profiles of complex geometries (3D roll forming) in high strength steels and that finite element simulation can be a useful tool in the design of the roll forming process.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The presented work deals with the calibration of a 2D numerical model for the simulation of long term bed load transport. A settled basin along an alpine stream was used as a case study. The focus is to parameterise the used multi fractional transport model such that a dynamically balanced behavior regarding erosion and deposition is reached. The used 2D hydrodynamic model utilizes a multi-fraction multi-layer approach to simulate morphological changes and bed load transport. The mass balancing is performed between three layers: a top mixing layer, an intermediate subsurface layer and a bottom layer. Using this approach bears computational limitations in calibration. Due to the high computational demands, the type of calibration strategy is not only crucial for the result, but as well for the time required for calibration. Brute force methods such as Monte Carlo type methods may require a too large number of model runs. All here tested calibration strategies used multiple model runs utilising the parameterization and/or results from previous run. One concept was to reset to initial bed elevations after each run, allowing the resorting process to convert to stable conditions. As an alternative or in combination, the roughness was adapted, based on resulting nodal grading curves, from the previous run. Since the adaptations are a spatial process, the whole model domain is subdivided in homogeneous sections regarding hydraulics and morphological behaviour. For a faster optimization, the adaptation of the parameters is made section wise. Additionally, a systematic variation was done, considering results from previous runs and the interaction between sections. The used approach can be considered as similar to evolutionary type calibration approaches, but using analytical links instead of random parameter changes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

When an accurate hydraulic network model is available, direct modeling techniques are very straightforward and reliable for on-line leakage detection and localization applied to large class of water distribution networks. In general, this type of techniques based on analytical models can be seen as an application of the well-known fault detection and isolation theory for complex industrial systems. Nonetheless, the assumption of single leak scenarios is usually made considering a certain leak size pattern which may not hold in real applications. Upgrading a leak detection and localization method based on a direct modeling approach to handle multiple-leak scenarios can be, on one hand, quite straightforward but, on the other hand, highly computational demanding for large class of water distribution networks given the huge number of potential water loss hotspots. This paper presents a leakage detection and localization method suitable for multiple-leak scenarios and large class of water distribution networks. This method can be seen as an upgrade of the above mentioned method based on a direct modeling approach in which a global search method based on genetic algorithms has been integrated in order to estimate those network water loss hotspots and the size of the leaks. This is an inverse / direct modeling method which tries to take benefit from both approaches: on one hand, the exploration capability of genetic algorithms to estimate network water loss hotspots and the size of the leaks and on the other hand, the straightforwardness and reliability offered by the availability of an accurate hydraulic model to assess those close network areas around the estimated hotspots. The application of the resulting method in a DMA of the Barcelona water distribution network is provided and discussed. The obtained results show that leakage detection and localization under multiple-leak scenarios may be performed efficiently following an easy procedure.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An experimental model and a mathematical model with the introduction of a ramp in the channel of Obenaus model are presented. The aim is to present a better reproduction of the real layer pollution deposited on the HV insulators. This better reproduction is obtained from two types of thickness variation: the introduction of a ramp (soft variation) and the introduction of a step (sudden variation). The computational simulations and the experimental data suggest that the introduction of the ramp is the better reproduction of the layer pollution. The ramp approximates to the real layer pollution more than the step.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

[EN]In this paper we propose a finite element method approach for modelling the air quality in a local scale over complex terrain. The area of interest is up to tens of kilometres and it includes pollutant sources. The proposed methodology involves the generation of an adaptive tetrahedral mesh, the computation of an ambient wind field, the inclusion of the plume rise effect in the wind field, and the simulation of transport and reaction of pollutants. The methodology is used to simulate a fictitious pollution episode in La Palma island (Canary Island, Spain)…

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Porous materials are widely used in many fields of industrial applications, to achieve the requirements of noise reduction, that nowadays derive from strict regulations. The modeling of porous materials is still a problematic issue. Numerical simulations are often problematic in case of real complex geometries, especially in terms of computational times and convergence. At the same time, analytical models, even if partly limited by restrictive simplificative hypotheses, represent a powerful instrument to capture quickly the physics of the problem and general trends. In this context, a recently developed numerical method, called the Cell Method, is described, is presented in the case of the Biot's theory and applied for representative cases. The peculiarity of the Cell Method is that it allows for a direct algebraic and geometrical discretization of the field equations, without any reduction to a weak integral form. Then, the second part of the thesis presents the case of interaction between two poroelastic materials under the context of double porosity. The idea of using periodically repeated inclusions of a second porous material into a layer composed by an original material is described. In particular, the problem is addressed considering the efficiency of the analytical method. A analytical procedure for the simulation of heterogeneous layers based is described and validated considering both conditions of absorption and transmission; a comparison with the available numerical methods is performed. ---------------- I materiali porosi sono ampiamente utilizzati per diverse applicazioni industriali, al fine di raggiungere gli obiettivi di riduzione del rumore, che sono resi impegnativi da norme al giorno d'oggi sempre più stringenti. La modellazione dei materiali porori per applicazioni vibro-acustiche rapprensenta un aspetto di una certa complessità. Le simulazioni numeriche sono spesso problematiche quando siano coinvolte geometrie di pezzi reali, in particolare riguardo i tempi computazionali e la convergenza. Allo stesso tempo, i modelli analitici, anche se parzialmente limitati a causa di ipotesi semplificative che ne restringono l'ambito di utilizzo, rappresentano uno strumento molto utile per comprendere rapidamente la fisica del problema e individuare tendenze generali. In questo contesto, un metodo numerico recentemente sviluppato, il Metodo delle Celle, viene descritto, implementato nel caso della teoria di Biot per la poroelasticità e applicato a casi rappresentativi. La peculiarità del Metodo delle Celle consiste nella discretizzazione diretta algebrica e geometrica delle equazioni di campo, senza alcuna riduzione a forme integrali deboli. Successivamente, nella seconda parte della tesi viene presentato il caso delle interazioni tra due materiali poroelastici a contatto, nel contesto dei materiali a doppia porosità. Viene descritta l'idea di utilizzare inclusioni periodicamente ripetute di un secondo materiale poroso all'interno di un layer a sua volta poroso. In particolare, il problema è studiando il metodo analitico e la sua efficienza. Una procedura analitica per il calcolo di strati eterogenei di materiale viene descritta e validata considerando sia condizioni di assorbimento, sia di trasmissione; viene effettuata una comparazione con i metodi numerici a disposizione.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

La distorsione della percezione della distanza tra due stimoli puntuali applicati sulla superfice della pelle di diverse regioni corporee è conosciuta come Illusione di Weber. Questa illusione è stata osservata, e verificata, in molti esperimenti in cui ai soggetti era chiesto di giudicare la distanza tra due stimoli applicati sulla superficie della pelle di differenti parti corporee. Da tali esperimenti si è dedotto che una stessa distanza tra gli stimoli è giudicata differentemente per diverse regioni corporee. Il concetto secondo cui la distanza sulla pelle è spesso percepita in maniera alterata è ampiamente condiviso, ma i meccanismi neurali che manovrano questa illusione sono, allo stesso tempo, ancora ampiamente sconosciuti. In particolare, non è ancora chiaro come sia interpretata la distanza tra due stimoli puntuali simultanei, e quali aree celebrali siano coinvolte in questa elaborazione. L’illusione di Weber può essere spiegata, in parte, considerando la differenza in termini di densità meccano-recettoriale delle differenti regioni corporee, e l’immagine distorta del nostro corpo che risiede nella Corteccia Primaria Somato-Sensoriale (homunculus). Tuttavia, questi meccanismi sembrano non sufficienti a spiegare il fenomeno osservato: infatti, secondo i risultati derivanti da 100 anni di sperimentazioni, le distorsioni effettive nel giudizio delle distanze sono molto più piccole rispetto alle distorsioni che la Corteccia Primaria suggerisce. In altre parole, l’illusione osservata negli esperimenti tattili è molto più piccola rispetto all’effetto prodotto dalla differente densità recettoriale che affligge le diverse parti del corpo, o dall’estensione corticale. Ciò, ha portato a ipotizzare che la percezione della distanza tattile richieda la presenza di un’ulteriore area celebrale, e di ulteriori meccanismi che operino allo scopo di ridimensionare – almeno parzialmente – le informazioni derivanti dalla corteccia primaria, in modo da mantenere una certa costanza nella percezione della distanza tattile lungo la superfice corporea. E’ stata così proposta la presenza di una sorta di “processo di ridimensionamento”, chiamato “Rescaling Process” che opera per ridurre questa illusione verso una percezione più verosimile. Il verificarsi di questo processo è sostenuto da molti ricercatori in ambito neuro scientifico; in particolare, dal Dr. Matthew Longo, neuro scienziato del Department of Psychological Sciences (Birkbeck University of London), le cui ricerche sulla percezione della distanza tattile e sulla rappresentazione corporea sembrano confermare questa ipotesi. Tuttavia, i meccanismi neurali, e i circuiti che stanno alla base di questo potenziale “Rescaling Process” sono ancora ampiamente sconosciuti. Lo scopo di questa tesi è stato quello di chiarire la possibile organizzazione della rete, e i meccanismi neurali che scatenano l’illusione di Weber e il “Rescaling Process”, usando un modello di rete neurale. La maggior parte del lavoro è stata svolta nel Dipartimento di Scienze Psicologiche della Birkbeck University of London, sotto la supervisione del Dott. M. Longo, il quale ha contribuito principalmente all’interpretazione dei risultati del modello, dando suggerimenti sull’elaborazione dei risultati in modo da ottenere un’informazione più chiara; inoltre egli ha fornito utili direttive per la validazione dei risultati durante l’implementazione di test statistici. Per replicare l’illusione di Weber ed il “Rescaling Proess”, la rete neurale è stata organizzata con due strati principali di neuroni corrispondenti a due differenti aree funzionali corticali: • Primo strato di neuroni (il quale dà il via ad una prima elaborazione degli stimoli esterni): questo strato può essere pensato come parte della Corteccia Primaria Somato-Sensoriale affetta da Magnificazione Corticale (homunculus). • Secondo strato di neuroni (successiva elaborazione delle informazioni provenienti dal primo strato): questo strato può rappresentare un’Area Corticale più elevata coinvolta nell’implementazione del “Rescaling Process”. Le reti neurali sono state costruite includendo connessioni sinaptiche all’interno di ogni strato (Sinapsi Laterali), e connessioni sinaptiche tra i due strati neurali (Sinapsi Feed-Forward), assumendo inoltre che l’attività di ogni neurone dipenda dal suo input attraverso una relazione sigmoidale statica, cosi come da una dinamica del primo ordine. In particolare, usando la struttura appena descritta, sono state implementate due differenti reti neurali, per due differenti regioni corporee (per esempio, Mano e Braccio), caratterizzate da differente risoluzione tattile e differente Magnificazione Corticale, in modo da replicare l’Illusione di Weber ed il “Rescaling Process”. Questi modelli possono aiutare a comprendere il meccanismo dell’illusione di Weber e dare così una possibile spiegazione al “Rescaling Process”. Inoltre, le reti neurali implementate forniscono un valido contributo per la comprensione della strategia adottata dal cervello nell’interpretazione della distanza sulla superficie della pelle. Oltre allo scopo di comprensione, tali modelli potrebbero essere impiegati altresì per formulare predizioni che potranno poi essere verificate in seguito, in vivo, su soggetti reali attraverso esperimenti di percezione tattile. E’ importante sottolineare che i modelli implementati sono da considerarsi prettamente come modelli funzionali e non intendono replicare dettagli fisiologici ed anatomici. I principali risultati ottenuti tramite questi modelli sono la riproduzione del fenomeno della “Weber’s Illusion” per due differenti regioni corporee, Mano e Braccio, come riportato nei tanti articoli riguardanti le illusioni tattili (per esempio “The perception of distance and location for dual tactile pressures” di Barry G. Green). L’illusione di Weber è stata registrata attraverso l’output delle reti neurali, e poi rappresentata graficamente, cercando di spiegare le ragioni di tali risultati.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

L’interazione che abbiamo con l’ambiente che ci circonda dipende sia da diverse tipologie di stimoli esterni che percepiamo (tattili, visivi, acustici, ecc.) sia dalla loro elaborazione per opera del nostro sistema nervoso. A volte però, l’integrazione e l’elaborazione di tali input possono causare effetti d’illusione. Ciò si presenta, ad esempio, nella percezione tattile. Infatti, la percezione di distanze tattili varia al variare della regione corporea considerata. Il concetto che distanze sulla cute siano frequentemente erroneamente percepite, è stato scoperto circa un secolo fa da Weber. In particolare, una determinata distanza fisica, è percepita maggiore su parti del corpo che presentano una più alta densità di meccanocettori rispetto a distanze applicate su parti del corpo con inferiore densità. Oltre a questa illusione, un importante fenomeno osservato in vivo è rappresentato dal fatto che la percezione della distanza tattile dipende dall’orientazione degli stimoli applicati sulla cute. In sostanza, la distanza percepita su una regione cutanea varia al variare dell’orientazione degli stimoli applicati. Recentemente, Longo e Haggard (Longo & Haggard, J.Exp.Psychol. Hum Percept Perform 37: 720-726, 2011), allo scopo di investigare come sia rappresentato il nostro corpo all’interno del nostro cervello, hanno messo a confronto distanze tattili a diverse orientazioni sulla mano deducendo che la distanza fra due stimoli puntuali è percepita maggiore se applicata trasversalmente sulla mano anziché longitudinalmente. Tale illusione è nota con il nome di Illusione Tattile Orientazione-Dipendente e diversi risultati riportati in letteratura dimostrano che tale illusione dipende dalla distanza che intercorre fra i due stimoli puntuali sulla cute. Infatti, Green riporta in un suo articolo (Green, Percpept Pshycophys 31, 315-323, 1982) il fatto che maggiore sia la distanza applicata e maggiore risulterà l’effetto illusivo che si presenta. L’illusione di Weber e l’illusione tattile orientazione-dipendente sono spiegate in letteratura considerando differenze riguardanti la densità di recettori, gli effetti di magnificazione corticale a livello della corteccia primaria somatosensoriale (regioni della corteccia somatosensoriale, di dimensioni differenti, sono adibite a diverse regioni corporee) e differenze nella dimensione e forma dei campi recettivi. Tuttavia tali effetti di illusione risultano molto meno rilevanti rispetto a quelli che ci si aspetta semplicemente considerando i meccanismi fisiologici, elencati in precedenza, che li causano. Ciò suggerisce che l’informazione tattile elaborata a livello della corteccia primaria somatosensoriale, riceva successivi step di elaborazione in aree corticali di più alto livello. Esse agiscono allo scopo di ridurre il divario fra distanza percepita trasversalmente e distanza percepita longitudinalmente, rendendole più simili tra loro. Tale processo assume il nome di “Rescaling Process”. I meccanismi neurali che operano nel cervello allo scopo di garantire Rescaling Process restano ancora largamente sconosciuti. Perciò, lo scopo del mio progetto di tesi è stato quello di realizzare un modello di rete neurale che simulasse gli aspetti riguardanti la percezione tattile, l’illusione orientazione-dipendente e il processo di rescaling avanzando possibili ipotesi circa i meccanismi neurali che concorrono alla loro realizzazione. Il modello computazionale si compone di due diversi layers neurali che processano l’informazione tattile. Uno di questi rappresenta un’area corticale di più basso livello (chiamata Area1) nella quale una prima e distorta rappresentazione tattile è realizzata. Per questo, tale layer potrebbe rappresentare un’area della corteccia primaria somatosensoriale, dove la rappresentazione della distanza tattile è significativamente distorta a causa dell’anisotropia dei campi recettivi e della magnificazione corticale. Il secondo layer (chiamato Area2) rappresenta un’area di più alto livello che riceve le informazioni tattili dal primo e ne riduce la loro distorsione mediante Rescaling Process. Questo layer potrebbe rappresentare aree corticali superiori (ad esempio la corteccia parietale o quella temporale) adibite anch’esse alla percezione di distanze tattili ed implicate nel Rescaling Process. Nel modello, i neuroni in Area1 ricevono informazioni dagli stimoli esterni (applicati sulla cute) inviando quindi informazioni ai neuroni in Area2 mediante sinapsi Feed-forward eccitatorie. Di fatto, neuroni appartenenti ad uno stesso layer comunicano fra loro attraverso sinapsi laterali aventi una forma a cappello Messicano. E’ importante affermare che la rete neurale implementata è principalmente un modello concettuale che non si preme di fornire un’accurata riproduzione delle strutture fisiologiche ed anatomiche. Per questo occorre considerare un livello astratto di implementazione senza specificare un’esatta corrispondenza tra layers nel modello e regioni anatomiche presenti nel cervello. Tuttavia, i meccanismi inclusi nel modello sono biologicamente plausibili. Dunque la rete neurale può essere utile per una migliore comprensione dei molteplici meccanismi agenti nel nostro cervello, allo scopo di elaborare diversi input tattili. Infatti, il modello è in grado di riprodurre diversi risultati riportati negli articoli di Green e Longo & Haggard.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The research is aimed at contributing to the identification of reliable fully predictive Computational Fluid Dynamics (CFD) methods for the numerical simulation of equipment typically adopted in the chemical and process industries. The apparatuses selected for the investigation, specifically membrane modules, stirred vessels and fluidized beds, were characterized by a different and often complex fluid dynamic behaviour and in some cases the momentum transfer phenomena were coupled with mass transfer or multiphase interactions. Firs of all, a novel modelling approach based on CFD for the prediction of the gas separation process in membrane modules for hydrogen purification is developed. The reliability of the gas velocity field calculated numerically is assessed by comparison of the predictions with experimental velocity data collected by Particle Image Velocimetry, while the applicability of the model to properly predict the separation process under a wide range of operating conditions is assessed through a strict comparison with permeation experimental data. Then, the effect of numerical issues on the RANS-based predictions of single phase stirred tanks is analysed. The homogenisation process of a scalar tracer is also investigated and simulation results are compared to original passive tracer homogenisation curves determined with Planar Laser Induced Fluorescence. The capability of a CFD approach based on the solution of RANS equations is also investigated for describing the fluid dynamic characteristics of the dispersion of organics in water. Finally, an Eulerian-Eulerian fluid-dynamic model is used to simulate mono-disperse suspensions of Geldart A Group particles fluidized by a Newtonian incompressible fluid as well as binary segregating fluidized beds of particles differing in size and density. The results obtained under a number of different operating conditions are compared with literature experimental data and the effect of numerical uncertainties on axial segregation is also discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The diagnosis, grading and classification of tumours has benefited considerably from the development of DCE-MRI which is now essential to the adequate clinical management of many tumour types due to its capability in detecting active angiogenesis. Several strategies have been proposed for DCE-MRI evaluation. Visual inspection of contrast agent concentration curves vs time is a very simple yet operator dependent procedure, therefore more objective approaches have been developed in order to facilitate comparison between studies. In so called model free approaches, descriptive or heuristic information extracted from time series raw data have been used for tissue classification. The main issue concerning these schemes is that they have not a direct interpretation in terms of physiological properties of the tissues. On the other hand, model based investigations typically involve compartmental tracer kinetic modelling and pixel-by-pixel estimation of kinetic parameters via non-linear regression applied on region of interests opportunely selected by the physician. This approach has the advantage to provide parameters directly related to the pathophysiological properties of the tissue such as vessel permeability, local regional blood flow, extraction fraction, concentration gradient between plasma and extravascular-extracellular space. Anyway, nonlinear modelling is computational demanding and the accuracy of the estimates can be affected by the signal-to-noise ratio and by the initial solutions. The principal aim of this thesis is investigate the use of semi-quantitative and quantitative parameters for segmentation and classification of breast lesion. The objectives can be subdivided as follow: describe the principal techniques to evaluate time intensity curve in DCE-MRI with focus on kinetic model proposed in literature; to evaluate the influence in parametrization choice for a classic bi-compartmental kinetic models; to evaluate the performance of a method for simultaneous tracer kinetic modelling and pixel classification; to evaluate performance of machine learning techniques training for segmentation and classification of breast lesion.